Modifications to the relationship between the magnetic field and weak Zeeman features in the spectra of astrophysical masers

1990 ◽  
Vol 361 ◽  
pp. L53 ◽  
Author(s):  
Gerald E. Nedoluha ◽  
William D. Watson
1993 ◽  
Vol 10 (4) ◽  
pp. 275-277
Author(s):  
J.O. Murphy ◽  
J.M. Lopez ◽  
C.P. Dyt

AbstractThe effect of varying magnetic field strength on the frequency of oscillatory motions for cellular multimode magnetoconvection has been investigated. In addition the influence of the thermal, viscous and magnetic diffusivities have been taken into account and the range of preferred horizontal scales established. The relationship between the period of oscillation and the magnetic field strength is determined.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
L. Wang ◽  
Q. M. Ren ◽  
J. C. Han ◽  
Y. D. Zhang

To eliminate the jump points of multipole angle values after subdivision at low temperature, the magnetic field and temperature field characteristics of a multipole magnetic encoder are analyzed in this study, and the effect of changes in magnetic field strength and temperature field on the precision of angle values is studied. To eliminate the jump point of multipole angle values caused by changes in the temperature field, the suppression method based on single-pole angle value fitting is proposed. The error between the single-pole and multipole angle values is tabulated by the oversampling linear interpolation method, and the precision of fitting single-pole to multipole angle values is effectively improved. The error of the angle value caused by changes in the temperature field is studied and analyzed, and the relationship between the jump angle values and the pole number of the multipole magnetic encoder is obtained. Furthermore, the jump point is compensated for by the jump range of the multipole angle values. Finally, the angle accuracy of the multipole magnetic encoder in a cryogenic chamber is experimentally verified. The experimental results show that the low-temperature jump point compensation method proposed for the multipole magnetic encoder in this paper can effectively suppress the jump of the angle values.


2017 ◽  
Vol 38 (4) ◽  
pp. 555-565
Author(s):  
Alicja Przybył ◽  
Rafał Rakoczy ◽  
Maciej Konopacki ◽  
Marian Kordas ◽  
Radosław Drozd ◽  
...  

Abstract The aim of the study was to present an experimental investigation of the influence of the RMF on mixing time. The obtained results suggest that the homogenization time for the tested experimental set-up depending on the frequency of the RMF can be worked out by means of the relationship between the dimensionless mixing time number and the Reynolds number. It was shown that the magnetic field can be applied successfully to mixing liquids.


2012 ◽  
Vol 503 ◽  
pp. 3-7
Author(s):  
Meng Zhao ◽  
Ji Bin Zou ◽  
Jing Shang

According to researching the spin traveling wave pump, the relationship of the characteristics of magnetic fluid and the press is investigated under the spin magnetic field by the theory method. The relationship of moving, magnetic field and press is investigated by the decoupled computation between the magnetic field and force. The method is scientificity and rationality by the testing. The distributing shape of magnetic fluid in the pump is affected by the adding magnetic field under the spin magnetic field when the magnetic fluid is filled in the pump. At the same time, the adding magnetic field is affected by magnetic particles of magnetic fluid. The magnetic fluid can be moved by the effect of the adding magnetic field in the pump. The flux of magnetic fluid increases with the magnetic field.


2010 ◽  
Vol 28 (9) ◽  
pp. 1695-1702 ◽  
Author(s):  
T. Xiao ◽  
Q. Q. Shi ◽  
T. L. Zhang ◽  
S. Y. Fu ◽  
L. Li ◽  
...  

Abstract. Interplanetary linear magnetic holes (LMHs) are structures in which the magnetic field magnitude decreases with little change in the field direction. They are a 10–30% subset of all interplanetary magnetic holes (MHs). Using magnetic field and plasma measurements obtained by Cluster-C1, we surveyed the LMHs in the solar wind at 1 AU. In total 567 interplanetary LMHs are identified from the magnetic field data when Cluster-C1 was in the solar wind from 2001 to 2004. We studied the relationship between the durations and the magnetic field orientations, as well as that of the scales and the field orientations of LMHs in the solar wind. It is found that the geometrical structure of the LMHs in the solar wind at 1 AU is consistent with rotational ellipsoid and the ratio of scales along and across the magnetic field is about 1.93:1. In other words, the structure is elongated along the magnetic field at 1 AU. The occurrence rate of LMHs in the solar wind at 1 AU is about 3.7 per day. It is shown that not only the occurrence rate but also the geometrical shape of interplanetary LMHs has no significant change from 0.72 AU to 1 AU in comparison with previous studies. It is thus inferred that most of interplanetary LMHs observed at 1 AU are formed and fully developed before 0.72 AU. The present results help us to study the formation mechanism of the LMHs in the solar wind.


Geophysics ◽  
1978 ◽  
Vol 43 (5) ◽  
pp. 1002-1010 ◽  
Author(s):  
A. Kaufman

This paper considers the behavior of the frequency and transient responses of the magnetic field created by currents in conducting bodies. It is assumed that the surrounding medium is an insulator. The relationship between the low‐frequency part of the frequency spectrum and the late stage of the transient response depends on the type of conductor. These responses and the distribution of the spectrum poles differ for conductors having finite and infinite dimensions. The dependence of various components of the field on conductivity differs, which is important for understanding the resolving capabilities of the inductive methods.


2015 ◽  
Vol 1094 ◽  
pp. 453-457
Author(s):  
Hai Feng Ji ◽  
Chun Fu Gao ◽  
Xin Sheng He ◽  
Guang Zhang

With the purpose of studying the main influence on the cylinder-typed magneto-rheological fluid (MRF) clutch, the relationship between the output of shear stress and its affecting factors is presented in this paper; through theoretical derivation from the Bingham Model and the cylinder-typed shear model, the stress born by the MRF in the clutch is analysed, and the affecting factors on the clutch is also simulated and verified through experiments. The study shows that as the magnetic field strengthens, the shear stress of the cylinder-typed MRF clutch grows linearly, with proportionality constant at 0.162; the increase of shear rate, relevant to the magnetic field strength, makes little difference to the torque output, with proportionality constant at 0.00026B. The results indicate that mechanical-electrical integration of clutch devices can be achieved through the control of magnetic field output of the electromagnet.


2021 ◽  
Author(s):  
Weiming Tong ◽  
Bihe Chen

Abstract Why does the Earth rotate? At present, several theories on Earth rotation remain hypotheses. Hence, the aim of this study was to obtain experimental evidence of the relationship between the rotational force and magnetic field so that we can use experimental devices to demonstrate the rotation relationship among the planets and the sun. Each permanent magnet rotating under the action of an external force is installed on the shaft of DC motor; each magnetic ball designed to rotate in a magnetic field is placed in the center of a hollow sphere that can float on the water. Using the above setup, the experimental methods and procedures based on this research can be used to observe the rotation behaviour of a permanent magnet in a magnetic field, understand the reason for its rotation, and determine the strength of the rotational force of the permanent magnet in the magnetic field.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Vladimir N. Obridko ◽  
Bertha D. Shelting

We propose a new concept that considers the global complexes of activity as a combination of global and local fields. Traditionally, the complexes of activity have been identified from observations of active regions (ARs). Here, we show that a complex of activity comprises both (AR) and coronal holes (CHs). Our analysis is based on observations of magnetic fields of various scales, SOHO/MDI data, and UV observations of CH. The analysis has corroborated the existence of complexes of activity that involve AR and equatorial CH. Both AR and CH are embedded in an extended magnetic region dominated by the magnetic field of one sign, but not strictly unipolar. It is shown that the evolution of CH and AR is a single process. The relationship between the fields of various scales in the course of a cycle is discussed.


Sign in / Sign up

Export Citation Format

Share Document