Cluster Galaxy Evolution from a New Sample of Galaxy Clusters at 0.3

2001 ◽  
Vol 563 (2) ◽  
pp. 629-652 ◽  
Author(s):  
Amy E. Nelson ◽  
Anthony H. Gonzalez ◽  
Dennis Zaritsky ◽  
Julianne J. Dalcanton
Author(s):  
Geoff G Murphy ◽  
Robert M Yates ◽  
Shazrene S Mohamed

Abstract We present an analysis of the formation and chemical evolution of stellar haloes around (a) Milky Way Analogue (MWA) galaxies and (b) galaxy clusters in the L-Galaxies 2020 semi-analytic model of galaxy evolution. Observed stellar halo properties are better reproduced when assuming a gradual stripping model for the removal of cold gas and stars from satellites, compared to an instantaneous stripping model. The slope of the stellar mass – metallicity relation for MWA stellar haloes is in good agreement with that observed in the local Universe. This extends the good agreement between L-Galaxies 2020 and metallicity observations from the gas and stars inside galaxies to those outside. Halo stars contribute on average only ∼0.1 per cent of the total circumgalactic medium (CGM) enrichment by z = 0 in MWAs, ejecting predominantly carbon produced by AGB stars. Around a quarter of MWAs have a single ‘significant progenitor’ with a mean mass of ∼ 2.3 × 109M⊙, similar to that measured for Gaia Enceladus. For galaxy clusters, L-Galaxies 2020 shows good correspondence with observations of stellar halo mass fractions, but slightly over-predicts stellar masses. Assuming a Navarro-Frenk-White profile for the stellar halo mass distribution provides the best agreement. On average, the intracluster stellar component (ICS) is responsible for 5.4 per cent of the total intracluster medium (ICM) iron enrichment, exceeding the contribution from the brightest cluster galaxy (BCG) by z = 0. We find that considering gradual stripping of satellites and realistic radial profiles is crucial for accurately modelling stellar halo formation on all scales in semi-analytic models.


1999 ◽  
Vol 171 ◽  
pp. 157-159
Author(s):  
Kristin Chiboucas ◽  
Mario Mateo

AbstractWe present initial results of a study of low surface brightness dwarf galaxies within galaxy clusters at z ≤ .03 as part of our program to determine the clustering properties, luminosity functions, and morphologies of dwarf galaxies in a wider range of cluster environments. In addition to deep V-band images covering up to 1 deg2 in each of 13 different clusters, we have obtained velocities from fiber spectroscopy for 235 galaxies in A3526. In A3526, we find a drop in cluster galaxy counts at intermediate magnitudes which is supported by our spectroscopic results.


2009 ◽  
Vol 693 (1) ◽  
pp. 152-173 ◽  
Author(s):  
Augustus Oemler ◽  
Alan Dressler ◽  
Daniel Kelson ◽  
Jane Rigby ◽  
Bianca M. Poggianti ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Myriam Gitti ◽  
Fabrizio Brighenti ◽  
Brian R. McNamara

The current generation of flagship X-ray missions,ChandraandXMM-Newton, has changed our understanding of the so-called “cool-core” galaxy clusters and groups. Instead of the initial idea that the thermal gas is cooling and flowing toward the center, the new picture envisages a complex dynamical evolution of the intracluster medium (ICM) regulated by the radiative cooling and the nongravitational heating from the active galactic nucleus (AGN). Understanding the physics of the hot gas and its interplay with the relativistic plasma ejected by the AGN is key for understanding the growth and evolution of galaxies and their central black holes, the history of star formation, and the formation of large-scale structures. It has thus become clear that the feedback from the central black hole must be taken into account in any model of galaxy evolution. In this paper, we draw a qualitative picture of the current knowledge of the effects of the AGN feedback on the ICM by summarizing the recent results in this field.


2018 ◽  
Vol 609 ◽  
pp. A133 ◽  
Author(s):  
S. Cariddi ◽  
M. D’Onofrio ◽  
G. Fasano ◽  
B. M. Poggianti ◽  
A. Moretti ◽  
...  

Context. Galaxy clusters are the largest virialized structures in the observable Universe. Knowledge of their properties provides many useful astrophysical and cosmological information. Aims. Our aim is to derive the luminosity and stellar mass profiles of the nearby galaxy clusters of the Omega-WINGS survey and to study the main scaling relations valid for such systems. Methods. We merged data from the WINGS and Omega-WINGS databases, sorted the sources according to the distance from the brightest cluster galaxy (BCG), and calculated the integrated luminosity profiles in the B and V bands, taking into account extinction, photometric and spatial completeness, K correction, and background contribution. Then, by exploiting the spectroscopic sample we derived the stellar mass profiles of the clusters. Results. We obtained the luminosity profiles of 46 galaxy clusters, reaching r200 in 30 cases, and the stellar mass profiles of 42 of our objects. We successfully fitted all the integrated luminosity growth profiles with one or two embedded Sérsic components, deriving the main clusters parameters. Finally, we checked the main scaling relation among the clusters parameters in comparison with those obtained for a selected sample of early-type galaxies (ETGs) of the same clusters. Conclusions. We found that the nearby galaxy clusters are non-homologous structures such as ETGs and exhibit a color–magnitude (CM) red-sequence relation very similar to that observed for galaxies in clusters. These properties are not expected in the current cluster formation scenarios. In particular the existence of a CM relation for clusters, shown here for the first time, suggests that the baryonic structures grow and evolve in a similar way at all scales.


2020 ◽  
Vol 633 ◽  
pp. A131 ◽  
Author(s):  
A. Böhm ◽  
B. L. Ziegler ◽  
J. M. Pérez-Martínez ◽  
T. Kodama ◽  
M. Hayashi ◽  
...  

Aims. While many aspects of the impact of dense environments on late-type galaxies at redshifts below unity have been scrutinized in the past few decades, observational studies of the interplay between environment and disk galaxy evolution at z >  1 are still scarce. We observed star-forming galaxies at z ≈ 1.5 selected from the HyperSuprimeCam Subaru Strategic Program. The galaxies are part of two significant overdensities of [O II] emitters identified via narrowband imaging and photometric redshifts from grizy photometry. Methods. We used the K-band Multi-Object Spectrograph (KMOS) to carry out Hα integral field spectroscopy of 46 galaxies in total. Ionized gas maps, star formation rates, and velocity fields were derived from the Hα emission line. We quantified morphological and kinematical asymmetries in order to look for potential gravitational (e.g., galaxy-galaxy) or hydrodynamical (e.g., ram-pressure) interactions. Results. Hα emission was detected in 36 of our targets. Of these galaxies, 34 are members of two (proto-)clusters at z = 1.47, confirming our selection strategy to be highly efficient. By fitting model velocity fields to the observed ones, we determined the intrinsic maximum rotation velocity Vmax of 14 galaxies. Utilizing the luminosity–velocity (Tully–Fisher) relation, we find that these galaxies are more luminous than their local counterparts of similar mass by up to ∼4 mag in the rest-frame B-band. In contrast to field galaxies at z <  1, the offsets of the z ≈ 1.5 (proto-)cluster galaxies from the local Tully–Fisher relation are not correlated with their star formation rates but with the ratio between Vmax and gas velocity dispersion σg. This probably reflects that fewer disks have settled to purely rotational kinematics and high Vmax/σg ratios, as is observed in the field at similar redshifts. Tests with degraded low-redshift cluster galaxy data show that we cannot identify purely hydrodynamical interactions with the imaging currently at hand. Due to relatively low galaxy velocity dispersions (σv <  400 km s−1) of the (proto-)clusters, gravitational interactions are likely more efficient, resulting in higher kinematical asymmetries than in present-days clusters.


2020 ◽  
Vol 28 (1) ◽  
Author(s):  
Keiichi Umetsu

AbstractWeak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here, we present a self-contained pedagogical review of cluster–galaxy weak lensing, covering a range of topics relevant to its cosmological and astrophysical applications. We begin by reviewing the theoretical foundations of gravitational lensing from first principles, with a special attention to the basics and advanced techniques of weak gravitational lensing. We summarize and discuss key findings from recent cluster–galaxy weak-lensing studies on both observational and theoretical grounds, with a focus on cluster mass profiles, the concentration–mass relation, the splashback radius, and implications from extensive mass-calibration efforts for cluster cosmology.


2019 ◽  
Vol 488 (2) ◽  
pp. 1572-1579 ◽  
Author(s):  
David Harvey ◽  
Andrew Robertson ◽  
Richard Massey ◽  
Ian G McCarthy

ABSTRACT Models of cold dark matter (CDM) predict that the distribution of dark matter in galaxy clusters should be cuspy, centrally concentrated. Constant density cores would be strong evidence for beyond CDM physics, such as self-interacting dark matter (SIDM). An observable consequence would be oscillations of the brightest cluster galaxy (BCG) in otherwise relaxed galaxy clusters. Offset BCGs have indeed been observed – but only interpreted via a simplified, analytic model of oscillations. We compare these observations to the BAryons and HAloes of MAssive Sysmtes (BAHAMAS)–SIDM suite of cosmological simulations, which include SIDM and a fully hydrodynamical treatment of star formation and feedback. We predict that the median offset of BCGs increases with the SIDM cross-section, cluster mass, and the amount of stellar mass within 10 kpc, while CDM exhibits no trend in mass. Interpolating between the simulated cross-sections, we find that the observations (of 10 clusters) are consistent with CDM at the ∼1.5σ level, and prefer cross-section σ/m < 0.12(0.39) cm2 g−1 at 68 per cent (95 per cent) confidence level. This is on the verge of ruling out velocity-independent dark matter self-interactions as the solution to discrepancies between the predicted and observed behaviour of dwarf galaxies, and will be improved by larger surveys by Euclid or Super-pressure Balloon-borne Imaging Telescope (SuperBIT).


2014 ◽  
Vol 10 (S309) ◽  
pp. 291-292
Author(s):  
Ricardo Demarco ◽  
Alessandro Rettura ◽  
Chris Lidman ◽  
Julie Nantais ◽  
Yara Jaffe ◽  
...  

AbstractOne of the most characteristic features of galaxy clusters is the so-called “red sequence” (RS) of early-type galaxies. Since these galaxies are, in general, devoid of gas and dust, their red colors are mainly a consequence of their passive nature. However, the physical mechanisms responsible for quenching their star formation, thus originating the RS, are poorly understood. Environmental effects should play a significant role in the formation of the RS by transforming the observed galaxy properties from late to early-type ones. In this respect, we have initiated a KMOS program aimed at studying the kinematical structure of cluster galaxies at 0.8 < z < 1.7 in an effort to disentangle the physical mechanisms responsible for cluster galaxy evolution and the formation of the RS.


2014 ◽  
Vol 10 (S311) ◽  
pp. 110-115
Author(s):  
Roger L. Davies ◽  
A. Beifiori ◽  
R. Bender ◽  
M. Cappellari ◽  
J. Chan ◽  
...  

AbstractKMOS is a cryogenic infrared spectrograph fed by twentyfour deployable integral field units that patrol a 7.2 arcminute diameter field of view at the Nasmyth focus of the ESO VLT. It is well suited to the study of galaxy clusters at 1 < z < 2 where the well understood features in the restframe V-band are shifted into the KMOS spectral bands. Coupled with HST imagining, KMOS offers a window on the critical epoch for galaxy evolution, 7-10 Gyrs ago, when the key properties of cluster galaxies were established. We aim to investigate the size, mass, morphology and star formation history of galaxies in the clusters. Here we describe the instrument, discuss the status of the observations and report some preliminary results.


Sign in / Sign up

Export Citation Format

Share Document