The Impact of Aerators on Water Contamination by Emerging Gram-Negative Opportunists in At-Risk Hospital Departments

2014 ◽  
Vol 35 (2) ◽  
pp. 122-129 ◽  
Author(s):  
Maria Luisa Cristina ◽  
Anna Maria Spagnolo ◽  
Beatrice Casini ◽  
Angelo Baggiani ◽  
Pietro Del Giudice ◽  
...  

Objective.Our aim was to evaluate the impact of aerators on water microbiological contamination in at-risk hospital departments, with a view to quantifying the possible risk of patient exposure to waterborne microorganisms.Design.We analyzed the microbiological and chemical-physical characteristics of hot and cold water in some critical hospital departments.Setting.Two hospitals in northern Italy.Methods.We took 304 water samples over a 1-year period, at 3-month intervals, from taps used by healthcare personnel for handwashing, surgical washing, and the washing of medical equipment. We analyzed heterotrophic plate counts (HPCs) at 36°C and 22°C, nonfastidious gram-negative bacteria (GNB-NE), and Legionella pneumophila.Results.The percentages of positivity and mean values of HPCs at 22°C, HPCs at 36°C, and GNB-NE loads were significantly higher at outlet points than in the plumbing system. In particular, GNB-NE positivity was higher at outlet points than in the plumbing system in both the cold water (31.58% vs 6.58% of samples were positive) and hot water (21.05% vs 3.95%) supplies. Our results also revealed contamination by L. pneumophila both in the plumbing system and at outlet points, with percentages of positive samples varying according to the serogroup examined (serogroups 1 and 2-14). The mean concentrations displayed statistically significant (P < .001) differences between the outlet points (27,382.89 ± 42,245.33 colony-forming units [cfu]/L) and the plumbing system (19,461.84 ± 29,982.11 cfu/L).Conclusions.These results reveal a high level of contamination of aerators by various species of gram-negative opportunists that are potentially very dangerous for immunocompromised patients and, therefore, the need to improve the management of these devices.

Author(s):  
Aida Mekhoukhe ◽  
Nacer Mohellebi ◽  
Tayeb Mohellebi ◽  
Leila Deflaoui-Abdelfettah ◽  
Sonia Medouni-Adrar ◽  
...  

OBJECTIVE: the present work proposed to extract Locust Bean Gum (LBG) from Algerian carob fruits, evaluate physicochemical and rheological properties (solubility). It aimed also to develop different formulations of strawberry jams with a mixture of LBG and pectin in order to obtain a product with a high sensory acceptance. METHODS: the physicochemical characteristics of LBG were assessed. The impact of temperature on solubility was also studied. The physical and the sensory profile and acceptance of five Jams were evaluated. RESULTS: composition results revealed that LBG presented a high level of carbohydrate but low concentrations of fat and ash. The LBG was partially cold-water-soluble (∼62% at 25°C) and needed heating to reach a higher solubility value (∼89% at 80 °C). Overall, the sensorial acceptances decreased in jams J3 which was formulated with 100% pectin and commercial one (J5). The external preference map explained that most consumers were located to the right side of the map providing evidence that most samples appreciated were J4 and J2 (rate of 80–100%). CONCLUSION: In this investigation, the LBG was used successfully in the strawberry jam’s formulation.


1987 ◽  
Vol 8 (9) ◽  
pp. 357-363 ◽  
Author(s):  
Richard M. Vickers ◽  
Victor L. Yu ◽  
S. Sue Hanna ◽  
Paul Muraca ◽  
Warren Diven ◽  
...  

AbstractWe conducted a prospective environmental study for Legionella pneumophila in 15 hospitals in Pennsylvania. Hot water tanks, cold water sites, faucets, and show-erheads were surveyed four times over a one-year period. Sixty percent (9/15) of hospitals surveyed were contaminated with L pneumophila. Although contamination could not be linked to a specific municipal water supplier, most of the contaminated supplies came from rivers. Parameters found to be significantly associated with contamination included elevated hot water temperature, vertical configuration of the hot water tank, older tanks, and elevated calcium and magnesium concentrations of the water (P < 0.05). This study suggests that L pneumophila contamination could be predicted based on design of the distribution system, as well as physicochemical characteristics of the water.


2021 ◽  
Vol 59 (3) ◽  
Author(s):  
Daniela Glažar Ivče ◽  
Dobrica Rončević ◽  
Marina Šantić ◽  
Arijana Cenov ◽  
Dijana Tomić Linšak ◽  
...  

Research background. Legionella are Gram-negative bacteria that are ubiquitous in the natural environment. Contaminated water in manmade water systems is a potential source of transmission of Legionnaires’ disease (LD). The aim of this study was to explore the prevalence of Legionella pneumophila (L. pneumophila) in the drinking water distribution system (DWDS) of Primorje-Gorski Kotar County (PGK County), Croatia, for the period 2013-2019, coupled with the incidence of LD. A number of L. pneumophila-positive samples (>100 CFU/L), serogroup distribution, and the degree of contamination of specific facilities (health & aged care, tourism, sports) were assessed. Based on the results obtained, the reasoning for the implementation of a mandatory Legionella environmental surveillance program was assessed. Experimental approach. Sample testing for Legionella was carried out according to ISO 1173. A Heterotrophic Plate Count (HPC) and P. aeruginosa were analysed along with the basic physico-chemical indicators of drinking water quality. The research period was divided into two parts, namely, the 2013-2018 period (before implementation of the prevention program, after the outbreak of LD), and year 2019 (proactive approach, no LD cases recorded). Results and conclusion. During the 7-year observation period in PGK County, an increase in the number of samples tested for Legionella was found. An increase in Legionella-positive samples (particularly pronounced during the warmer part of the year) was recorded, along with a growing trend in the number of reported LD cases. In addition to hot water systems, the risk of Legionella colonization also applies to cold water systems. Health & aged care facilities appear to be at highest risk. In addition to the higher proportion of positive samples and a higher degree of microbiological load at these facilities, the highest proportion of L. pneumophila SGs 2-14 was identified. Due to the diagnostic limitations of the applied tests, the number of LD cases is underdiagnosed. Novelty and scientific contribution. The introduction of a mandatory preventive approach to monitoring Legionella in DWDS water samples, along with the definition of national criteria for the interpretation of results, will create the preconditions for diagnosis and adequate treatment of larger numbers of LD cases.


2021 ◽  
Author(s):  
Yuri Mikhailovich Trushin ◽  
Anton Sergeevich Aleshchenko ◽  
Oleg Nikolaevich Zoshchenko ◽  
Mark Suleimanovich Arsamakov ◽  
Ivan Vasilevich Tkachev ◽  
...  

Abstract The paper describes a methodology for assessing the impact of wax deposition in reservoir oil during cold water injection into heterogeneous carbonate reservoir D3-III of the Kharyaga field. The main goal is to determine the optimal amount of hot water that must be injected before switching to cold water without affecting the field development. The paper presents the results of laboratory studies to determine the thermophysical properties of oil, samples of net reservoir and non-reservoir rock, as well as the results of laboratory studies to determine the conditions and nature of wax deposition in oil when the temperature and pressure conditions change. Calculations were carried out to describe the physical model of oil displacement by water of various temperatures. A series of synthetic sector model runs was performed, which includes the average properties of the selected reservoir and the results of laboratory studies in order to determine the effect of cold water injection on the development performance.


Author(s):  
Antonios Papadakis ◽  
Maria Keramarou ◽  
Dimosthenis Chochlakis ◽  
Vassilios Sandalakis ◽  
Varvara Mouchtouri ◽  
...  

Hotel water systems colonized with Legionella spp. have been the source of travel-associated Legionnaires&rsquo; disease and cases, clusters or outbreaks continue to be reported worldwide each year. A total of 132 hotels linked with travel-associated Legionnaires&rsquo; disease, as reported through the European Legionnaires&rsquo; Disease Surveillance Network, were inspected and tested for Legionella spp. during 2000&ndash;2019 by the public health authorities of the island of Crete (Greece). A total of 3,311 samples were collected: 1,885 (56.93%) from cold water supply systems, 1,387 (41.89%) from hot water supply systems, 37 (1.12%) were swab samples and two (0.06%) were soil. Of those, 685 (20.69%), were collected from 83 (62.89%) hotels, testing positive (&ge; 50CFU/L) for Legionella pneumophila) serogroups 1-10, 12-14 and non-pneumophila species (L. anisa, L. erythra, L. tusconensis, L. taurinensis, L. birminghamensis, L. rubrilucens, L. londiniesis, L. oakridgensis, L. santicrusis, L. brunensis, L. maceacherii). The most frequently isolated L. pneumophila serogroups were 1 (27.92%) and 3 (17.08%). Significantly higher isolation rates were obtained from hot water supply systems (25.96%) versus cold water systems (16.98%) and swab samples (13.51%). A Relative Risk (R.R.) &gt; 1 (p &lt; 0.0001) was calculated for hot water temperature &lt;55 &deg;C (R.R.: 4.43), chlorine concentrations &lt;0.2 mg/L (R.R.: 2.69), star rating &lt;4 (R.R.: 1.73) and absence of Water Safety Plan implementation (R.R.: 1.57).


2022 ◽  
Vol 11 (2) ◽  
pp. 298
Author(s):  
Manuel Herrero-Fernandez ◽  
Trinidad Montero-Vilchez ◽  
Pablo Diaz-Calvillo ◽  
Maria Romera-Vilchez ◽  
Agustin Buendia-Eisman ◽  
...  

The frequency of hand hygiene has increased due to the COVID-19 pandemic, but there is little evidence regarding the impact of water exposure and temperature on skin. The aim of this study is to evaluate the effect of water exposure and temperature on skin barrier function in healthy individuals. A prospective observational study was conducted. Temperature, pH, transepidermal water loss (TEWL), erythema and stratum corneum hydration (SCH) were measured objectively before and after hot- and cold-water exposure and TempTest® (Microcaya TempTest, Bilbao, Spain) contact. Fifty healthy volunteers were enrolled. Hot-water exposure increased TEWL (25.75 vs. 58.58 g·h−1·m−2), pH (6.33 vs. 6.65) and erythema (249.45 vs. 286.34 AU). Cold-water immersion increased TEWL (25.75 vs. 34.96 g·h−1·m−2) and pH (6.33 vs. 6.62). TEWL (7.99 vs. 9.98 g·h−1·m−2) and erythema (209.07 vs. 227.79 AU) increased after being in contact with the hot region (44 °C) of the TempTest. No significant differences were found after contact with the cold region (4 °C) of the TempTest. In conclusion, long and continuous water exposure damages skin barrier function, with hot water being even more harmful. It would be advisable to use cold or lukewarm water for handwashing and avoid hot water. Knowing the proper temperature for hand washing might be an important measure to prevent flares in patients with previous inflammatory skin diseases on their hands.


2020 ◽  
Vol 8 (4) ◽  
pp. 142-146
Author(s):  
Niloofar Ghomimaghsad ◽  
Somayeh Yaslianifard ◽  
Mohammad Mohammadzadeh ◽  
Masoud Dadashi ◽  
Mohammad Noorisepehr

Background: One of the most common routes of infection development in humans is contaminated water. Legionella pneumophila and Campylobacter jejuni are the important causes of community- and hospital-acquired pneumonia and gastroenteritis that are transmitted to humans via the inhalation of contaminated water droplets and consumption of contaminated water, respectively. Thus, continuous monitoring of the water supply systems for these pathogens has great importance in public health. Objective: This study aimed to evaluate the water contamination of Karaj hospitals with these two bacterial species. Materials and Methods: In this study, 62 water samples were obtained from different parts of the hospitals of Karaj from April to September 2019, including air conditioning systems, dialysis equipment, ventilation tanks, and different wards of a hospital such as infectious diseases, pediatrics, gastroenterology, dialysis, and intensive and neonatal intensive care units. The samples were collected in sterile containers and immediately transferred to the laboratory for further analysis. The culture on specific media, staining, and biochemical tests were performed to identify the L. pneumophila and C. jejuni. Results: Out of 62 water samples, 25.8% (16 samples) were positive for L. pneumophila; 68.75% were observed in hot water samples, and 31.25% were attributed to cold water samples. Among 62 samples, 4.84% (3 samples) were positive for C. jejuni, which were all detected in hot water samples. Conclusion: Considering that the methods of water refinery of municipal water have no high efficiency, the quality improvement of the water sources of hospitals seems to be necessary.


1997 ◽  
Vol 18 (09) ◽  
pp. 637-640 ◽  
Author(s):  
Paul S. Graman ◽  
Gail A. Quinlan ◽  
June A. Rank

Abstract Objective: To investigate a case of nosocomial legionellosis, identify pathways of transmission, and effect control of the environmental source. Design: Case investigation and environmental culture surveillance. Setting: A 720-bed university teaching hospital. Case Patient: A ventilator-dependent 66-year-old male developed nosocomial pneumonia due to Legionella pneumophila serogroup 6 after 3 months in an intensive-care unit (ICU). The patient had no intake of potable water except for ice chips from an ice machine in the ICU. Results: Cultures revealed L pneumophila serogroup 6 in the ice (4.3 colony-forming units/mL) and ice machine cold water (too numerous to count). Cultures from adjacent hot and cold taps, plus taps located near the patient, all were negative; ice machines and cold water on seven other patient units also were negative. Only sterile water had been used for tube feedings, mouth care, suctioning, and ventilator humidification. Hospital hot water previously had been colonized with L pneumophila serogroup 6, but all surveillance water cultures had been negative since chlorination of the hot-water system began the previous year; cold-water cultures had never before grown Legionella. The ice machine was disinfected with a 2-hour flush of 2.625% sodium hypochlorite. The supply line to the ice machine was replaced, and the cold-water pipe from the floor below was treated with 83 ppm sodium hypochlorite for 48 hours. All follow-up surveillance cultures of the ice machine remained negative through mid-1996. No additional cases of nosocomial legionellosis occurred. Conclusions: Ice machines may be reservoirs of L pneumophila in hospitals. Both ice and water dispensed from these machines may be contaminated, and nosocomial transmission may occur. Successful long-term decontamination and control can be accomplished with shock chlorination.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Dimitra Dimitriadi ◽  
Emmanuel Velonakis

The aim of this research was the isolation ofLegionellaspp. from domestic water supply networks in the Prefecture of Arta. A total of 100 water samples, from 25 houses, were collected. Half of the samples concerned the cold water and half the hot water supply. Purpose was to detect colonization of the water networks withLegionellaspp. >500 cfu/L by using the method of filtration (ISO 11731). Out of 100 samples, 6 samples from 3 houses were positive forLegionellaspp.Legionella pneumophilaserogroup 2–14 was isolated in 5 of 6 samples, whereas in the sixth sampleLegionella anisawas identified. Only three of the samples had residual chloride over 0.2 mg/L, rate which is necessary for potable water, according to the Greek hygienic practice. Concerning the temperature of hot water, the mean temperature of the negative forLegionellasamples was higher compared to the mean temperature of the positive forLegionellasamples (49.9°C versus 45.5°C). It is estimated that there is risk of infection through the use of showers. The low concentration of chloride and the temperature, which was found within the limits favorable to developingLegionellaspp. (20–45°C), provide fertile ground for proliferation of the bacteria.


Sign in / Sign up

Export Citation Format

Share Document