Double capture in C6+-He collisions at low impact energies

1991 ◽  
Vol 24 (17) ◽  
pp. L425-L430 ◽  
Author(s):  
C Harel ◽  
H Jouin ◽  
B Pons
Keyword(s):  
Author(s):  
R. C. Cieslinski ◽  
M. T. Dineen ◽  
J. L. Hahnfeld

Advanced Styrenic resins are being developed throughout the industry to bridge the properties gap between traditional HIPS (High Impact Polystyrene) and ABS (Acrylonitrile-Butadiene-Styrene copolymers) resins. These new resins have an unprecedented balance of high gloss and high impact energies. Dow Chemical's contribution to this area is based on a unique combination of rubber morphologies including labyrinth, onion skin, and core-shell rubber particles. This new resin, referred as a controlled morphology resin (CMR), was investigated to determine the toughening mechanism of this unique rubber morphology. This poster will summarize the initial studies of these resins using the double-notch four-point bend test of Su and Yee, tensile stage electron microscopy, and Poisson Ratio analysis of the fracture mechanism.


Alloy Digest ◽  
2003 ◽  
Vol 52 (2) ◽  

Abstract Allvac 13-8 Super Tough alloy is a modification of the standard Allvac 13-8 alloy. (See Alloy Digest SS-866, November 2002.) It has good fabricability and can be age hardened by a single treatment in the range 510 to 621 deg C (950 to 1150 deg F). Cold working prior to aging enhances the aging. These properties supplement the superior fracture toughness and Charpy impact energies. This martensitic precipitation-hardening stainless steel has very good resistance to general corrosion and stress-corrosion cracking. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-876. Producer or source: Allvac.


Soft Matter ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 120-125
Author(s):  
Rianne de Jong ◽  
Song-Chuan Zhao ◽  
Diana Garcia-Gonzalez ◽  
Gijs Verduijn ◽  
Devaraj van der Meer

Crater characteristics are compared for droplet and solid ball impact on a granular target at the same effective impact energies.


2015 ◽  
Vol 825-826 ◽  
pp. 369-376 ◽  
Author(s):  
Robert Prussak ◽  
Daniel Stefaniak ◽  
Christian Hühne ◽  
Michael Sinapius

This paper focuses on the reduction of process-related thermal residual stress in fiber metal laminates and its impact on the mechanical properties. Different modifications during fabrication of co-cure bonded steel/carbon epoxy composite hybrid structures were investigated. Specific examinations are conducted on UD-CFRP-Steel specimens, modifying temperature, pressure or using a thermal expansion clamp during manufacturing. The impact of these parameters is then measured on the deflection of asymmetrical specimens or due yield-strength measurements of symmetrical specimens. The tensile strength is recorded to investigate the effect of thermal residual stress on the mechanical properties. Impact tests are performed to determine the influence on resulting damage areas at specific impact energies. The experiments revealed that the investigated modifications during processing of UD-CFRP-Steel specimens can significantly lower the thermal residual stress and thereby improve the tensile strength.


1987 ◽  
Vol 98 ◽  
Author(s):  
S. E. Savas

ABSTRACTThe dependences of the electrode self-bias voltage and the ratio of ion energies on electrode area ratio are calculated for a model of capacitively coupled rf discharges. It is assumed that concentric spherical elecrodes with fluid-like radial ion flow adequately models the ion motion, that sheath impedances are dominant, and that ionization processes in the glow are due to ohmically heated electrons. Results show that the ratio of ion energies impacting the smaller electrode to those on the larger depends on the ratio of electrode areas in a more complex manner than a power law.The reason for this is that sheath impedances are more resistive or capacitive at different times in the rf cycle. The self-bias ratio is found to depend relatively little on the ionization model or the pressure but differs substantially from the “power law” result. The agreement of measurements with the model is fairly good.


2018 ◽  
Vol 51 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Akar Dogan ◽  
Yusuf Arman

In this study, the effects of temperature and impactor nose diameter on the impact behavior of woven glass-reinforced polyamide 6 (PA6) and polypropylene (PP) thermoplastic composites were investigated experimentally. Impact energies are chosen as 10, 30, 50, 70, 90, 110, 130, and 170 J. The thickness of composite materials is 4 mm. Impact tests were performed using a drop weight impact testing machine, CEAST-Fractovis Plus, and the load capacity of test machine is 22 kN. Hemispherical impactor nose diameter of 12, 7, and 20 mm were used as an impactor. The tests are conducted at room temperature (20°C and 75°C). As a result, the PP composites of the same thickness absorbed more energy than PA6 composites. The amount of absorbed energy of PP and PA6 composites decreased with temperature.


2012 ◽  
Vol 445 ◽  
pp. 959-964
Author(s):  
Z. Khan ◽  
Necar Merah ◽  
A. Bazoune ◽  
S. Furquan

Low velocity drop weight impact testing of CPVC pipes was conducted on 160 mm long pipe sections obtained from 4-inch (100 mm) diameter schedule 80 pipes. Impact test were carried out for the base (as received) pipes and after their exposure to out door natural weathering conditions in Dhahran, Saudi Arabia. The results of the impact testing on the natural (outdoor exposure) broadly suggest that the natural outdoor exposures produce no change in the impact resistance of CPVC pipe material for the impact events carrying low incident energies of 10 and 20J. At the impact energies of 35 and 50J the natural outdoor exposures appear to cause appreciable degradation in the impact resistance of the CPVC pipe material. This degradation is noted only for the longer exposure periods of 12 and 18 months.


Open Physics ◽  
2011 ◽  
Vol 9 (6) ◽  
Author(s):  
Heike Angermann ◽  
Orman Gref ◽  
Bert Stegemann

AbstractUltrathin SiO2 layers for potential applications in nano-scale electronic and photovoltaic devises were prepared by exposure to thermalized atomic oxygen under UHV conditions. Wet-chemical substrate pretreatment, layer deposition and annealing processes were applied to improve the electronic Si/SiO2 interface properties. This favourable effect of optimized wet-chemical pre-treatment can be preserved during the subsequent oxidation. The corresponding atomic-scale analysis of the electronic interface states after substrate pre-treatment and the subsequent silicon oxide layer formation is performed by field-modulated surface photovoltage (SPV), atomic force microscopy (AFM) and spectroscopic ellipsometry in the ultraviolet and visible region (UV-VIS-SE).


1973 ◽  
Vol 9 (4) ◽  
pp. 373-376 ◽  
Author(s):  
B. V. Voitsekhovskii ◽  
L. A. Mitin ◽  
F. F. Voitsekhovskaya
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document