Role of geometric parameters in electrical measurements of insulating thin films deposited on a conductive substrate

2012 ◽  
Vol 23 (3) ◽  
pp. 035602 ◽  
Author(s):  
S Kumar ◽  
R A Gerhardt
1997 ◽  
Vol 12 (4) ◽  
pp. 1152-1159 ◽  
Author(s):  
Sangsub Kim ◽  
Shunichi Hishita

We report the results of a study on the deposition and characterization of partially oriented BaTiO3 thin films on MgO-buffered Si(100) by radio-frequency magnetron sputtering. The structural and morphological characteristics of the MgO buffer layer were investigated as a function of substrate temperature. The x-ray θ-2θ, φ scans, and observation of surface morphology revealed that MgO grew with a tendency of (001) orientation. Partially (00l) or (h00) textured BaTiO3 thin films were obtained on Si(100) with the MgO buffer layer while randomly oriented BaTiO3 thin films with large-scale cracks on the surface were made without the MgO layer. Pt/BaTiO3/Pt multistructures were formed on Si(100), MgO/Si(100), and MgO(100) single crystal substrates to conduct preliminary electrical measurements for metal-insulator-metal type capacitor. Comparison of the crystallographic orientation, morphology, and electrical properties between the BaTiO3 films on Si(100) with and without the MgO buffer layer supported the favorable role of the MgO layer as a buffer for the growth of BaTiO3 films on Si(100).


1996 ◽  
Vol 453 ◽  
Author(s):  
Igor Kosacki ◽  
Harlan U. Anderson

AbstractThe results of structural and electrical measurements of nanocrystalline CeO2 thin films are presented. A correlation between the electrical conductivity and microstructure has been observed and discussed. The electrical properties of nanocrystalline CeO2 thin films are attributed to a dominant role of grain boundary phase.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aminat Oyiza Suleiman ◽  
Sabeur Mansouri ◽  
Nicolas Émond ◽  
Boris Le Drogoff ◽  
Théophile Bégin ◽  
...  

AbstractPhase competition in transition metal oxides has attracted remarkable interest for fundamental aspects and technological applications. Here, we report a concurrent study of the phase transitions in undoped and Cr-doped VO$$_2$$ 2 thin films. The structural, morphological and electrical properties of our films are examined and the microstructural effect on the metal–insulator transition (MIT) are highlighted. We further present a distinctive approach for analyzing the Raman data of undoped and Cr-doped VO$$_2$$ 2 thin films as a function of temperature, which are quantitatively correlated to the electrical measurements of VO$$_2$$ 2 films to give an insight into the coupling between the structural phase transition (SPT) and the MIT. These data are also combined with reported EXAFS measurements and a connection between the Raman intensities and the mean Debye–Waller factors $$\sigma ^2$$ σ 2 is established. We found that the temperature dependence of the $$\sigma _{R}^{2}(V-V)$$ σ R 2 ( V - V ) as calculated from the Raman intensity retraces the temperature profile of the $$\sigma _{EXAFS}^{2}(V-V)$$ σ EXAFS 2 ( V - V ) as obtained from the EXAFS data analysis. Our findings provide an evidence on the critical role of the thermal vibrational disorder in the VO$$_2$$ 2 phase transitions. Our study demonstrates that correlating Raman data with EXAFS analysis, the lattice and electronic structural dynamics can be probed.


Author(s):  
L.J. Chen ◽  
Y.F. Hsieh

One measure of the maturity of a device technology is the ease and reliability of applying contact metallurgy. Compared to metal contact of silicon, the status of GaAs metallization is still at its primitive stage. With the advent of GaAs MESFET and integrated circuits, very stringent requirements were placed on their metal contacts. During the past few years, extensive researches have been conducted in the area of Au-Ge-Ni in order to lower contact resistances and improve uniformity. In this paper, we report the results of TEM study of interfacial reactions between Ni and GaAs as part of the attempt to understand the role of nickel in Au-Ge-Ni contact of GaAs.N-type, Si-doped, (001) oriented GaAs wafers, 15 mil in thickness, were grown by gradient-freeze method. Nickel thin films, 300Å in thickness, were e-gun deposited on GaAs wafers. The samples were then annealed in dry N2 in a 3-zone diffusion furnace at temperatures 200°C - 600°C for 5-180 minutes. Thin foils for TEM examinations were prepared by chemical polishing from the GaA.s side. TEM investigations were performed with JE0L- 100B and JE0L-200CX electron microscopes.


Author(s):  
L. Tang ◽  
G. Thomas ◽  
M. R. Khan ◽  
S. L. Duan

Cr thin films are often used as underlayers for Co alloy magnetic thin films, such as Co1, CoNi2, and CoNiCr3, for high density longitudinal magnetic recording. It is belived that the role of the Cr underlayer is to control the growth and texture of the Co alloy magnetic thin films, and, then, to increase the in plane coercivity of the films. Although many epitaxial relationship between the Cr underlayer and the magnetic films, such as ﹛1010﹜Co/ {110﹜Cr4, ﹛2110﹜Co/ ﹛001﹜Cr5, ﹛0002﹜Co/﹛110﹜Cr6, have been suggested and appear to be related to the Cr thickness, the texture of the Cr underlayer itself is still not understood very well. In this study, the texture of a 2000 Å thick Cr underlayer on Nip/Al substrate for thin films of (Co75Ni25)1-xTix dc-sputtered with - 200 V substrate bias is investigated by electron microscopy.


Author(s):  
C. Ewins ◽  
J.R. Fryer

The preparation of thin films of organic molecules is currently receiving much attention because of the need to produce good quality thin films for molecular electronics. We have produced thin films of the polycyclic aromatic, perylene C10H12 by evaporation under high vacuum onto a potassium chloride (KCl) substrate. The role of substrate temperature in determining the morphology and crystallography of the films was then investigated by transmission electron microscopy (TEM).The substrate studied was the (001) face of a freshly cleaved crystal of KCl. The temperature of the KCl was controlled by an electric heater or a cold finger. The KCl was heated to 200°C under a vacuum of 10-6 torr and allowed to cool to the desired temperature. The perylene was then evaporated over a period of one minute from a molybdenum boat at a distance of 10cm from the KCl. The perylene thin film was then backed with an amorphous layer of carbon and floated onto copper microscope grids.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2021 ◽  
Vol 46 (5) ◽  
pp. 4137-4153
Author(s):  
Neha Verma ◽  
Rob Delhez ◽  
Niek M. van der Pers ◽  
Frans D. Tichelaar ◽  
Amarante J. Böttger

Sign in / Sign up

Export Citation Format

Share Document