Self-powered wearable sensing-textiles for real-time detecting environmental atmosphere and body motion based on surface-triboelectric coupling effect

2018 ◽  
Vol 29 (40) ◽  
pp. 405504 ◽  
Author(s):  
Tianming Zhao ◽  
Junlang Li ◽  
Hui Zeng ◽  
Yongming Fu ◽  
Haoxuan He ◽  
...  
Biosensors ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 342
Author(s):  
Meng Wang ◽  
Guangting Zi ◽  
Jiajun Liu ◽  
Yutong Song ◽  
Xishan Zhao ◽  
...  

Creatinine has become an important indicator for the early detection of uremia. However, due to the disadvantages of external power supply and large volume, some commercial devices for detecting creatinine concentration have lost a lot of popularity in everyday life. This paper describes the development of a self-powered biosensor for detecting creatinine in sweat. The biosensor can detect human creatinine levels in real time without the need for an external power source, providing information about the body’s overall health. The piezoelectric output voltage of creatininase/creatinase/sarcosine oxidase-modified ZnO nanowires (NWs) is significantly dependent on the creatinine concentration due to the coupling effect of the piezoelectric effect and enzymatic reaction (piezo-enzymatic-reaction effect), which can be regarded as both electrical energy and biosensing signal. Our results can be used for the detection of creatinine levels in the human body and have great potential in the prediction of related diseases.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 231
Author(s):  
Chengyu Li ◽  
Ziming Wang ◽  
Sheng Shu ◽  
Wei Tang

Recently, grating-structured triboelectric nanogenerators (TENG) operating in freestanding mode have been the subject of intensive research. However, standard TENGs based on interdigital electrode structures are unable to realize real-time sensing of the direction of the freestanding electrode movement. Here, a newly designed TENG, consisting of one group of grating freestanding electrodes and three groups of interdigitated induction electrodes with the identical period, has been demonstrated as a self-powered vector angle/displacement sensor (SPVS), capable of distinguishing the real-time direction of the freestanding electrode displacement. Thanks to the unique coupling effect between triboelectrification and electrostatic induction, periodic alternating voltage signals are generated in response to the rotation/sliding movement of the top freestanding electrodes on the bottom electrodes. The output peak-to-peak voltage of the SPVS can reach as high as 300 V at the rotation rate of 48 rpm and at the sliding velocity of 0.1 m/s, respectively. The resolution of the sensor reaches 8°/5 mm and can be further enhanced by decreasing the width of the electrodes. This present work not only demonstrates a novel method for angle/displacement detection but also greatly expands the applicability of TENG as self-powered vector sensors.


2015 ◽  
Vol 25 (24) ◽  
pp. 3688-3696 ◽  
Author(s):  
Fang Yi ◽  
Long Lin ◽  
Simiao Niu ◽  
Po Kang Yang ◽  
Zhaona Wang ◽  
...  

2021 ◽  
pp. 2100709 ◽  
Author(s):  
Zhengguang Yan ◽  
Liangliang Wang ◽  
Yifan Xia ◽  
Rendong Qiu ◽  
Wenquan Liu ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2322
Author(s):  
Xiaofei Ma ◽  
Xuan Liu ◽  
Xinxing Li ◽  
Yunfei Ma

With the rapid development of the Internet of Things (IoTs), big data analytics has been widely used in the sport field. In this paper, a light-weight, self-powered sensor based on a triboelectric nanogenerator for big data analytics in sports has been demonstrated. The weight of each sensing unit is ~0.4 g. The friction material consists of polyaniline (PANI) and polytetrafluoroethylene (PTFE). Based on the triboelectric nanogenerator (TENG), the device can convert small amounts of mechanical energy into the electrical signal, which contains information about the hitting position and hitting velocity of table tennis balls. By collecting data from daily table tennis training in real time, the personalized training program can be adjusted. A practical application has been exhibited for collecting table tennis information in real time and, according to these data, coaches can develop personalized training for an amateur to enhance the ability of hand control, which can improve their table tennis skills. This work opens up a new direction in intelligent athletic facilities and big data analytics.


2016 ◽  
Vol 61 (12) ◽  
pp. 1276-1287 ◽  
Author(s):  
Zheng ZHANG ◽  
QingLiang LIAO ◽  
XiaoQin YAN ◽  
Yue ZHANG

2011 ◽  
Vol 480-481 ◽  
pp. 1329-1334
Author(s):  
Wei Zheng ◽  
Zhan Zhong Cui

An effective non-contact electrostatic detection method is used for human body motion detection. Theoretical analysis and pratical experiments are carried out to prove that this method is effective in the field of human body monitoring, in which a model for human body induced potential by stepping has been proposed. Furthermore, experiment results also prove that it’s feasible to measure the average velocity and route of human body motion by multiple electrodes array. What’s more the real-time velocity and direction of human body motion can be determined by orthogonal electrostatic detector array, and the real-time velocity and direction of human body motion can be obtained within the range of 2 meters.


Sign in / Sign up

Export Citation Format

Share Document