Transparent graphene electrodes based hybrid perovskites photodetectors with broad spectral response from UV-visible to near-infrared

2021 ◽  
Author(s):  
Guoming Lin ◽  
Yuanwei Lin ◽  
Baoyun Sun

Abstract A new class of transparent graphene electrode based organic-inorganic halide perovskite photodetectors with broad spectral response is developed. These ultrasensitive devices exhibit high ON/OFF current ratio, high LDR, broad spectral range, excellent detection for weak light and easy fabrication with low-cost. Their semi-transparent feature and distinct photodetecting function for both sides would provide new applications affecting our daily lives.

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1020 ◽  
Author(s):  
S. Nunes ◽  
S. Saraiva ◽  
R. Pereira ◽  
M. Silva ◽  
L. Carlos ◽  
...  

In recent years, the synthesis of polymer electrolyte systems derived from biopolymers for the development of sustainable green electrochemical devices has attracted great attention. Here electrolytes based on the red seaweeds-derived polysaccharide κ-carrageenan (κ-Cg) doped with neodymium triflate (NdTrif3) and glycerol (Gly) were obtained by means of a simple, clean, fast, and low-cost procedure. The aim was to produce near-infrared (NIR)-emitting materials with improved thermal and mechanical properties, and enhanced ionic conductivity. Cg has a particular interest, due to the fact that it is a renewable, cost-effective natural polymer and has the ability of gelling in the presence of certain alkali- and alkaline-earth metal cations, being good candidates as host matrices for accommodating guest cations. The as-synthesised κ-Cg-based membranes are semi-crystalline, reveal essentially a homogeneous texture, and exhibit ionic conductivity values 1–2 orders of magnitude higher than those of the κ-Cg matrix. A maximum ionic conductivity was achieved for 50 wt.% Gly/κ-Cg and 20 wt.% NdTrif3/κ-Cg (1.03 × 10−4, 3.03 × 10−4, and 1.69 × 10−4 S cm−1 at 30, 60, and 97 °C, respectively). The NdTrif-based κ-Cg membranes are multi-wavelength emitters from the ultraviolet (UV)/visible to the NIR regions, due to the κ-Cg intrinsic emission and to Nd3+, 4F3/2→4I11/2-9/2.


2020 ◽  
Author(s):  
Xiaomei Yao ◽  
Xutao Zhang ◽  
Tingting Kang ◽  
Zhiyong Song ◽  
Qiang Sun ◽  
...  

Abstract A simple and low-cost fabrication of end-bonded contacts InAsSb NW (nanowire) array detector to weak light is demonstrated in this study. The detector is fabricated using InAsSb NW array grown by molecular beam epitaxy on GaAs substrate. The MIGS (metal-induced gap states) is induced by the end-bonded contact which suppresses the dark current at various temperatures. The existence of the interface dipole due to the interfacial gap states enhances the light excitation around the local field, thus upgrade the photo responsivity and photo detectivity to the weak light. The light intensity of the infrared light source in this report is 14 nW/cm2 which is about 3 to 4 orders of magnitude less than the laser source. The responsivity of the detector has reached 28.57 A/W at room temperature with the light (945 nm) radiation, while the detectivity is 4.81×1011 cm·Hz1/2 W−1. Anomalous temperature-dependent performance emerges at the variable temperature experiments, and we discussed the detailed mechanism behind the non-linear relationship between the photoresponse of the device and temperatures. Besides, the optoelectronic characteristics of the detector clarified that the light trapping effect and photogating effect of the NWs can enhance the photoresponse to the weak light across ultraviolet to near-infrared. These results highlight the feasibility of the InAsSb NW array detector to the infrared weak light without a cooling system.


2021 ◽  
Author(s):  
Christina Kaiser ◽  
Oskar Sandberg ◽  
Stefan Zeiske ◽  
Sam Gielen ◽  
Wouter Maes ◽  
...  

Abstract Photodiodes are ubiquitous in industry and consumer electronics. New applications for photodiodes are constantly emerging, such as the internet of things and wearable electronics that demand different mechanical and optoelectronic properties from those provided by conventional inorganic devices. This has stimulated considerable interest in the use of next generation semiconductors, particularly the organics, which provide a vast palette of available optoelectronic properties, can be incorporated into flexible form factor geometries, and promise extremely low cost, low embodied energy manufacturing from earth abundant materials. The sensitivity of a photodiode to low light intensities (typically important in these new applications) depends critically on the dark current. Organic photodiodes, however, are characterized by a much higher dark current than expected for thermally excited band-to-band transitions. Here, we show that the lower limit of the dark current is given by recombination via mid-gap trap states. This new insight is generated from temperature dependent dark current measurements of narrow-gap photodiodes for the near-infrared. Based on Shockley-Read-Hall statistics, a diode equation is derived which can be used to determine an upper limit for the specific detectivity and to explain the general trend observed for the light to dark current ratio as a function of the experimental open-circuit voltage for a series of organic photodiodes. A detailed understanding of the origins of noise in any detector is fundamental to defining performance limitations and thus is critical to materials and device selection, design and optimisation for all applications. Our work establishes these important principles for organic semiconductor photodiodes for the near-infrared.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Thanh-Lieu Thi Le ◽  
Lam Tan Nguyen ◽  
Hoai-Hue Nguyen ◽  
Nguyen Van Nghia ◽  
Nguyen Minh Vuong ◽  
...  

Nanostructures of titanium nitride (TiN) have recently been considered as a new class of plasmonic materials that have been utilized in many solar energy applications. This work presents the synthesis of a novel nanostructure of TiN that has a nanodonut shape from natural ilmenite ore using a low-cost and bulk method. The TiN nanodonuts exhibit strong and spectrally broad localized surface plasmon resonance absorption in the visible region centered at 560 nm, which is well suited for thermoplasmonic applications as a nanoscale heat source. The heat generation is investigated by water evaporation experiments under simulated solar light, demonstrating excellent solar light harvesting performance of the nanodonut structure.


2021 ◽  
Author(s):  
Song-Jeng Isaac Huang ◽  
Adil Muneeb ◽  
Sabhapathy Palani ◽  
Anjaiah Sheelam ◽  
Bayikadi Khasimsaheb ◽  
...  

Developing a non-precious metal electrocatalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is desirable for low-cost energy conversion devices. Herein, we designed and developed a new class...


RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 4935-4941
Author(s):  
Riza Ariyani Nur Khasanah ◽  
Hui-Ching Lin ◽  
Hsiang-Yun Ho ◽  
Yen-Ping Peng ◽  
Tsong-Shin Lim ◽  
...  

Cu2O/TNA/Ti photoanode showed spectral response outperformed Cu2O/Ti and Cu2O/FTO photocathodes. Cu2O/TNA/Ti showed better spectral response than that of TNA/Ti, ascribed to UV-visible light absorption of Cu2O, not to charge separation enhancement.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 196
Author(s):  
Araz Soltani Nazarloo ◽  
Vali Rasooli Sharabiani ◽  
Yousef Abbaspour Gilandeh ◽  
Ebrahim Taghinezhad ◽  
Mariusz Szymanek ◽  
...  

The purpose of this work was to investigate the detection of the pesticide residual (profenofos) in tomatoes by using visible/near-infrared spectroscopy. Therefore, the experiments were performed on 180 tomato samples with different percentages of profenofos pesticide (higher and lower values than the maximum residual limit (MRL)) as compared to the control (no pesticide). VIS/near infrared (NIR) spectral data from pesticide solution and non-pesticide tomato samples (used as control treatment) impregnated with different concentrations of pesticide in the range of 400 to 1050 nm were recorded by a spectrometer. For classification of tomatoes with pesticide content at lower and higher levels of MRL as healthy and unhealthy samples, we used different spectral pre-processing methods with partial least squares discriminant analysis (PLS-DA) models. The Smoothing Moving Average pre-processing method with the standard error of cross validation (SECV) = 4.2767 was selected as the best model for this study. In addition, in the calibration and prediction sets, the percentages of total correctly classified samples were 90 and 91.66%, respectively. Therefore, it can be concluded that reflective spectroscopy (VIS/NIR) can be used as a non-destructive, low-cost, and rapid technique to control the health of tomatoes impregnated with profenofos pesticide.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 325
Author(s):  
Bertalan Juhasz ◽  
Dawrin Pech-Puch ◽  
Jioji N. Tabudravu ◽  
Bastien Cautain ◽  
Fernando Reyes ◽  
...  

Three dermacozines, dermacozines N–P (1–3), were isolated from the piezotolerant Actinomycete strain Dermacoccus abyssi MT 1.1T, which was isolated from a Mariana Trench sediment in 2006. Herein, we report the elucidation of their structures using a combination of 1D/2D NMR, LC-HRESI-MSn, UV–Visible, and IR spectroscopy. Further confirmation of the structures was achieved through the analysis of data from density functional theory (DFT)–UV–Visible spectral calculations and statistical analysis such as two tailed t-test, linear regression-, and multiple linear regression analysis applied to either solely experimental or to experimental and calculated 13C-NMR chemical shift data. Dermacozine N (1) bears a novel linear pentacyclic phenoxazine framework that has never been reported as a natural product. Dermacozine O (2) is a constitutional isomer of the known dermacozine F while dermacozine P (3) is 8-benzoyl-6-carbamoylphenazine-1-carboxylic acid. Dermacozine N (1) is unique among phenoxazines due to its near infrared (NIR) absorption maxima, which would make this compound an excellent candidate for research in biosensing chemistry, photodynamic therapy (PDT), opto-electronic applications, and metabolic mapping at the cellular level. Furthermore, dermacozine N (1) possesses weak cytotoxic activity against melanoma (A2058) and hepatocellular carcinoma cells (HepG2) with IC50 values of 51 and 38 μM, respectively.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaomei Yao ◽  
Xutao Zhang ◽  
Tingting Kang ◽  
Zhiyong Song ◽  
Qiang Sun ◽  
...  

AbstractA simple fabrication of end-bonded contacts InAsSb NW (nanowire) array detector to weak light is demonstrated in this study. The detector is fabricated using InAsSb NW array grown by molecular beam epitaxy on GaAs substrate. The metal-induced gap states are induced by the end-bonded contact which suppresses the dark current at various temperatures. The existence of the interface dipole due to the interfacial gap states enhances the light excitation around the local field and thus upgrades the photoresponsivity and photodetectivity to the weak light. The light intensity of the infrared light source in this report is 14 nW/cm2 which is about 3 to 4 orders of magnitude less than the laser source. The responsivity of the detector has reached 28.57 A/W at room temperature with the light (945 nm) radiation, while the detectivity is 4.81 × 1011 cm·Hz1/2 W−1. Anomalous temperature-dependent performance emerges at the variable temperature experiments, and we discussed the detailed mechanism behind the nonlinear relationship between the photoresponse of the device and temperatures. Besides, the optoelectronic characteristics of the detector clarified that the light-trapping effect and photogating effect of the NWs can enhance the photoresponse to the weak light across ultraviolet to near-infrared. These results highlight the feasibility of the InAsSb NW array detector to the infrared weak light without a cooling system.


Sign in / Sign up

Export Citation Format

Share Document