scholarly journals A low-cost, multiplexedμECoG system for high-density recordings in freely moving rodents

2016 ◽  
Vol 13 (2) ◽  
pp. 026030 ◽  
Author(s):  
Michele Insanally ◽  
Michael Trumpis ◽  
Charles Wang ◽  
Chia-Han Chiang ◽  
Virginia Woods ◽  
...  
Keyword(s):  
Low Cost ◽  
2021 ◽  
Author(s):  
Liang Shi ◽  
Longfei Luo ◽  
Yina Lv ◽  
Shicheng Li ◽  
Changlong Li ◽  
...  
Keyword(s):  
Low Cost ◽  

2007 ◽  
Vol 1030 ◽  
Author(s):  
Jeroen van den Brand ◽  
Erik Veninga ◽  
Roel Kusters ◽  
Tomas Podprocky ◽  
Andreas Dietzel

AbstractA novel, cost effective technology to manufacture high density embedded electronic circuitry is demonstrated. The process consists of laser photoablation of the circuitry into a substrate through a mask and subsequent filling using a polymer thick film paste. Because the volume of the substrate is used it is possible to make thick and thereby highly conductive lines using low cost materials and processes. The process is demonstrated for a fan out circuitry in 100 µm thick polyethylene naphthalate (PEN). The fan out circuitry has linewidths of 50 µm and line spacings of 100 µm. The usability of the circuitry is demonstrated by the successful flipchip bonding of a thinned Si daisy chain dummy chip with 176 IO's.


2020 ◽  
pp. 263-285
Author(s):  
Badia Bouhdid ◽  
Wafa Akkari ◽  
Sofien Gannouni

While existing localization approaches mainly focus on enhancing the accuracy, particular attention has recently been given to reducing the localization algorithm implementation costs. To obtain a tradeoff between location accuracy and implementation cost, recursive localization approaches are being pursued as a cost-effective alternative to the more expensive localization approaches. In the recursive approach, localization information increases progressively as new nodes compute their positions and become themselves reference nodes. A strategy is then required to control and maintain the distribution of these new reference nodes. The lack of such a strategy leads, especially in high density networks, to wasted energy, important communication overhead and even impacts the localization accuracy. In this paper, the authors propose an efficient recursive localization approach that reduces the energy consumption, the execution time, and the communication overhead, yet it increases the localization accuracy through an adequate distribution of reference nodes within the network.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 000398-000424
Author(s):  
Doug Shelton ◽  
Tomii Kume

Lithography process optimization is a key technology enabling mass production of high-density interconnects using 3D and 2.5D technologies. In this paper, Canon will continue its discussion of lithography optimization of thick-resist profiles and overlay accuracy to increase process margins for Through-Silicon Via (TSV) and Redistribution Layer (RDL) applications. Canon will also provide updates on the FPA-5510iV and FPA-5510iZ i-line steppers that are gaining acceptance as high-resolution, and low-cost lithography solutions for aggressive advanced packaging, 3D and 2.5D applications.


2015 ◽  
Vol 2015 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Dyi-Chung Hu ◽  
Yu-Min Lin ◽  
Hsiang Hung Chang ◽  
Tao-Chih Chang ◽  
Wei-Chung Lo ◽  
...  

A new concept of packaging platform calls eHDF (embedded high density film), that without any TXVs is been proposed. The eHDF uses the technology from two categories; one utilize the semiconductor fine line technology infrastructure and the other takes the advantage of laminate organic large panel process infrastructure. Hence, the fine line, better electrical performance and low cost requirements can be addressed at the same time by the eHDF packaging platform. In this paper, a test vehicle based on eHDF structure will be built and modules assembly with test chips on eHDF substrate will be performed.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000790-000793 ◽  
Author(s):  
Doug Shelton ◽  
Tomii Kume

Lithography process optimization is a key technology enabling mass production of high-density interconnects using 3D and 2.5D technologies. In this paper, Canon continues its investigation of lithography optimization of thick-resist profiles and overlay accuracy to increase process margins for Through-Silicon Via (TSV) and Redistribution Layer (RDL) applications. Canon will also provide updates on the FPA-5510iV and FPA-5510iZ i-line steppers that are gaining acceptance as high-resolution, and low-cost lithography solutions for aggressive advanced packaging, 3D and 2.5D applications also preliminary data illustrating 450 mm wafer process challenges.


2020 ◽  
Vol 36 (3) ◽  
pp. 185-195 ◽  
Author(s):  
Negin Farshchi ◽  
Yalda K Ostad

Regarding the current demand for controlling plastic pollution, recycling of polymer sounds a promising solution. However, recycling causes mechanical and thermal shortcomings in polymers. Addition of nanoparticles to recycled materials may overcome these shortcomings. Nanocomposites can be achieved either by blending or through polymerization. Sepiolite as a nanoparticle enhances the thermal properties of polymers. In this study, the effect of sepiolite as a nanoparticle has been investigated on the thermal and mechanical behavior of recycled high-density polyethylene (HDPE). Hardness, density, Vicat softening temperature, melt flow rate (MFR), and differential scanning calorimetry has been investigated on recycled HDPE containing different amount of sepiolite. Results showed that both the amount of recycled HDPE and the sepiolite content affect the mechanical and thermal behavior of samples. Increasing the amount of recycled component resulted in increasing of MFR, a slight increase in density, and decrease in Vicat softening point, hardness, melting temperature, and degree of crystallization. As an opposite effect of these to factors on crystallinity of HDPE, sepiolite content has better effects to be considered separately for each recycle content. Sepiolite can be introduced as a low-cost reinforcement filler in recycling industry for tuning new compositions based on process condition, or vice versa.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2535 ◽  
Author(s):  
Zhonghua Ma ◽  
Yanfeng Jiang

A three-dimensional (3D) printable chipless radio frequency identification (RFID) tag, with high density and sensitivity, is proposed and fulfilled on insulator substrates. By printing a rectangular slot ring and designing specific geometry on the substrate, the printed structure shows high sensitivity in a resonant manner, with the benefits of high density and low cost. Considering the multiple rectangular rings with different sizes in a concentric distribution, a bit coding sequence can be observed in frequency spectra because of the corresponding different resonant frequencies aroused by the printed slots. In this way, the 3D printable chipless RFID tag can be fulfilled by adopting the structure of the rectangular slot ring on the insulated substrates. The main characteristics of the designed rectangular slot rings are verified on both flexible and solid substrates. A 12-bit chipless tag based on the slot ring structures is designed and implemented. The simulation and experiment results show good agreement on its characteristics. The frequency response reveals the fact that the 2th, 3th and 4th harmonic do not exist, which is a unique merit for improving the encoding capacity and the sensitivity of the corresponding reader. The electric field direction of the electromagnetic wave of the reader excitation tag is demonstrated to be wide, up to 90° on the tag horizontal plane, 30° on the vertical direction.


Sign in / Sign up

Export Citation Format

Share Document