scholarly journals Study on the viability of egg shell as a lost circulation material in synthetic based drilling fluid

2019 ◽  
Vol 1349 ◽  
pp. 012135
Author(s):  
N K I Nik Ab Lah ◽  
K Ngah ◽  
A Sauki
2021 ◽  
Author(s):  
Arturo Magana-Mora ◽  
Mohammad AlJubran ◽  
Jothibasu Ramasamy ◽  
Mohammed AlBassam ◽  
Chinthaka Gooneratne ◽  
...  

Abstract Objective/Scope. Lost circulation events (LCEs) are among the top causes for drilling nonproductive time (NPT). The presence of natural fractures and vugular formations causes loss of drilling fluid circulation. Drilling depleted zones with incorrect mud weights can also lead to drilling induced losses. LCEs can also develop into additional drilling hazards, such as stuck pipe incidents, kicks, and blowouts. An LCE is traditionally diagnosed only when there is a reduction in mud volume in mud pits in the case of moderate losses or reduction of mud column in the annulus in total losses. Using machine learning (ML) for predicting the presence of a loss zone and the estimation of fracture parameters ahead is very beneficial as it can immediately alert the drilling crew in order for them to take the required actions to mitigate or cure LCEs. Methods, Procedures, Process. Although different computational methods have been proposed for the prediction of LCEs, there is a need to further improve the models and reduce the number of false alarms. Robust and generalizable ML models require a sufficiently large amount of data that captures the different parameters and scenarios representing an LCE. For this, we derived a framework that automatically searches through historical data, locates LCEs, and extracts the surface drilling and rheology parameters surrounding such events. Results, Observations, and Conclusions. We derived different ML models utilizing various algorithms and evaluated them using the data-split technique at the level of wells to find the most suitable model for the prediction of an LCE. From the model comparison, random forest classifier achieved the best results and successfully predicted LCEs before they occurred. The developed LCE model is designed to be implemented in the real-time drilling portal as an aid to the drilling engineers and the rig crew to minimize or avoid NPT. Novel/Additive Information. The main contribution of this study is the analysis of real-time surface drilling parameters and sensor data to predict an LCE from a statistically representative number of wells. The large-scale analysis of several wells that appropriately describe the different conditions before an LCE is critical for avoiding model undertraining or lack of model generalization. Finally, we formulated the prediction of LCEs as a time-series problem and considered parameter trends to accurately determine the early signs of LCEs.


2021 ◽  
Author(s):  
Alexey Ruzhnikov

Abstract Fractured carbonate formations are prone to lost circulation, which affects the well construction process and has longtime effect on well integrity. Depending on the nature of losses (either induced or related to local dissolutions) the success rate is different when the induced losses can be cured with a high chance, and the one related to dissolutions may take a long time, and despite multiple attempts, the success rate is normally low. To have a better understanding of the complete losses across the fractured carbonates, a series of studies were initiated. First, to understand the strength of the loss zone, the fracture closing pressure was evaluated studying the fluid level in the annulus and back-calculating the effect of drilling fluid density. Second, the formation properties across the loss circulation zones were studied using microresistivity images, dip data, and imaging of fluid-saturated porous media. The results of the studies brought a lot of new information and explained some previous mysteries. The formation strength across the lost circulation zone was measured, and it was confirmed that it remains constant despite other changes of the well construction parameters. Additionally, it was confirmed that the carbonates are naturally highly fractured, having over 900 fractures along the wellbore. The loss circulation zone was characterized, and it was confirmed that the losses are not related to the fractures but rather to the karst, dissolution, and megafractures. The size and dip of the fractures were identified, and it was proven the possibility to treat them with conventional materials. However, the size of identified megafractures and karst zones exceeding the fractures by 10 times in true vertical depth, and in horizontal wells the difference is even higher due to measured depth. This new information helps to explain the previous unsuccessful attempts with the conventional lost circulation materials. The manuscript provides new information on the fractured carbonate formation characterization not available previously in the literature. It allows to align the subsurface and drilling visions regarding the nature of the losses and further develop the curing mechanisms.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Abdulmalek Ahmed ◽  
Salaheldin Elkatatny ◽  
Abdulwahab Ali ◽  
Mahmoud Abughaban ◽  
Abdulazeez Abdulraheem

Drilling a high-pressure, high-temperature (HPHT) well involves many difficulties and challenges. One of the greatest difficulties is the loss of circulation. Almost 40% of the drilling cost is attributed to the drilling fluid, so the loss of the fluid considerably increases the total drilling cost. There are several approaches to avoid loss of return; one of these approaches is preventing the occurrence of the losses by identifying the lost circulation zones. Most of these approaches are difficult to apply due to some constraints in the field. The purpose of this work is to apply three artificial intelligence (AI) techniques, namely, functional networks (FN), artificial neural networks (ANN), and fuzzy logic (FL), to identify the lost circulation zones. Real-time surface drilling parameters of three wells were obtained using real-time drilling sensors. Well A was utilized for training and testing the three developed AI models, whereas Well B and Well C were utilized to validate them. High accuracy was achieved by the three AI models based on the root mean square error (RMSE), confusion matrix, and correlation coefficient (R). All the AI models identified the lost circulation zones in Well A with high accuracy where the R is more than 0.98 and RMSE is less than 0.09. ANN is the most accurate model with R=0.99 and RMSE=0.05. An ANN was able to predict the lost circulation zones in the unseen Well B and Well C with R=0.946 and RMSE=0.165 and R=0.952 and RMSE=0.155, respectively.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Biao Ma ◽  
Xiaolin Pu ◽  
Zhengguo Zhao ◽  
Hao Wang ◽  
Wenxin Dong

The lost circulation in a formation is one of the most complicated problems that have existed in drilling engineering for a long time. The key to solving the loss of drilling fluid circulation is to improve the pressure-bearing capacity of the formation. The tendency is to improve the formation pressure-bearing capacity with drilling fluid technology for strengthening the wellbore, either to the low fracture pressure of the formation or to that of the naturally fractured formation. Therefore, a laboratory study focused on core fracturing simulations for the strengthening of wellbores was conducted with self-developed fracture experiment equipment. Experiments were performed to determine the effect of the gradation of plugging materials, kinds of plugging materials, and drilling fluid systems. The results showed that fracture pressure in the presence of drilling fluid was significantly higher than that in the presence of water. The kinds and gradation of drilling fluids had obvious effects on the core fracturing process. In addition, different drilling fluid systems had different effects on the core fracture process. In the same case, the core fracture pressure in the presence of oil-based drilling fluid was less than that in the presence of water-based drilling fluid.


2007 ◽  
Vol 4 (1) ◽  
pp. 103 ◽  
Author(s):  
Ozcan Baris ◽  
Luis Ayala ◽  
W. Watson Robert

The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified) fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow. 


2021 ◽  
Author(s):  
Ahmed Mostafa Samak ◽  
Abdelalim Hashem Elsayed

Abstract During drilling oil, gas, or geothermal wells, the temperature difference between the formation and the drilling fluid will cause a temperature change around the borehole, which will influence the wellbore stresses. This effect on the stresses tends to cause wellbore instability in high temperature formations, which may lead to some problems such as formation break down, loss of circulation, and untrue kick. In this research, a numerical model is presented to simulate downhole temperature changes during circulation then simulate its effect on fracture pressure gradient based on thermo-poro-elasticity theory. This paper also describes an incident occurred during drilling a well in Gulf of Suez and the observations made during this incident. It also gives an analysis of these observations which led to a reasonable explanation of the cause of this incident. This paper shows that the fracture pressure decreases as the temperature of wellbore decreases, and vice versa. The research results could help in determining the suitable drilling fluid density in high-temperature wells. It also could help in understanding loss and gain phenomena in HT wells which may happen due to thermal effect. The thermal effect should be taken into consideration while preparing wellbore stability studies and choosing mud weight of deep wells, HPHT wells, deep water wells, or wells with depleted zones at high depths because cooling effect reduces the wellbore stresses and effective FG. Understanding and controlling cooling effect could help in controlling the reduction in effective FG and so avoid lost circulation and additional unnecessary casing points.


2021 ◽  
Author(s):  
Alexey Ruzhnikov ◽  
Edgar Echevarria

Abstract Carbonate formations around the world and specifically in a Middle East are prone to have total losses while drilling. And the nature of the losses often related to the highly fractured formations of the pay zone. When such fracture(s) is crossed by the wellbore the lost circulation initiated and led to a drilling without a return to a surface. To avoid undesired well control event or wellbore instability and to maintain the constant bottom hole pressure the mud cap drilling strategy often used as a preventative measure. The mud cap can be either the continuous or based on some volume or time interval, depends on the local practices or the policy of an operator. The mud cap flow rate as well as mud cap mud weight are often based on the best practices, not supported by an engineering study. To understand the behavior of the drilling fluid level in the annulus while drilling with total losses the drilling bottom hole assembly equipped with annular pressure while drilling tool was used. As the drilling required to use the continuous mud cap, then the specific guideline was developed on measurement of the bottom hole pressure and further conversion of it to the fluid level. The study was performed across pay zone with one or several loss circulation zones identified. As the result it was confirmed that the used mud cap flow rate had minor to none effect on the fluid level position in the annulus and that the bottom hole pressure remained the same. It showed as well that different loss zones are behaving in a different way, what can be considered as a factor affecting their ability to be sealed. The obtained knowledge and the information should help to understand better the loss circulation behavior as well be an important step toward development of the product which may cure the losses in high fractured carbonate formations. The results of the study can be implemented in any other project or a field.


2021 ◽  
Author(s):  
Manchukarn Naknaka ◽  
Trinh Dinh Phu ◽  
Khamawat Siritheerasas ◽  
Pattarapong Prasongtham ◽  
Feras Abu-Jafar ◽  
...  

Abstract The objective of this research is to describe the methodology used to drill the most extended reach well (ERD) in the Gulf of Thailand. The Jasmine field is a mature, sophisticated, oil field with many shallow reservoir targets that require a minimum 10,000ft horizontal displacement. As such, the main challenges faced, and the novel technology applied is described in detail by this research. The research is an example of successfully drilling a challenging well, safely and efficiently. The Jasmine C – Well X, is a 3-string design structure with an 11-3/4in top hole, an 8-1/2in intermediate section, and a 6-1/8in reservoir horizontal section. Well X was constructed by utilizing an existing platform well slot. The challenge involved drilling from the top hole to the kickoff point and directional drilling away from the casing stump of the existing well to avoid any collision with nearby wells emanating from the Jasmine C platform. The 8-1/2in hole section was the most important segment as it had to reach the landing point precisely in order to start the 6-1/8in section for GeoSteering in the reservoir section. The 8-1/2in section encountered three challenges that could affect drilling efficiency.Directional Drilling – The complexities of the well profile:The method involved making well inclination (INC) lower than 82deg in the tangent interval in order to reduce the well's tortuosity as much as possible.Hole condition – Hole cleaning and fluid losses control:The method involved the use of Low Toxicity Oil Based Mud (LTOBM) CaCO3 system, the chemical elements in the drilling fluid system could help to seal the high permeable zones.Drilling Engineering – Torque and Drag (T&D) control:The method taked into account the 7in casing run to the bottom of the hole, which the casing driven system did not allow for rotation The well was completed successfully without any additional trips. A Total Depth (TD) was of 13,052ftMD was achieved to reach reservoirs at 3,260ft TVDSS. It was therefore announced in 2019 as a new ERD record for Mubadala Thailand (ERD ratio = 3.26, Directional Difficulty Index (DDI) = 6.95). The top hole and 9-5/8in casing were set in the right depth. An 8-1/2in section was accomplished on the planned trajectory with an average on bottom Rate of Penetration (ROP) at 319 ft/hr. The 6-1/8in section was drilled by geosteering to achieve sub-surface objectives. A total of 2,143ft intervals inside the reservoir was successfully achieved. While drilling, lost circulation events occured, but the mud system was conditioned with Lost Circulation Materials (LCM). Therefore, drilling performance was unaffected. Moreover, the Bit's Total Flow Area (TFA) and Rotary steering systems (RSS) flow restrictor was configured to allow directional drilling at a very low Flow rate of 470gpm. Addition, 30 joints of 5-1/2in Heavy Weight Drill Pipe (HWDP) and 39 joints of 4in HWDP were added into the Bottom Hole Assembly (BHA) to transfer string weight to drill bitsand drill to well TD. As complexities of the well profile were fully aware, the casing was runned and minimized the open hole friction until the casing was deployed successfully. In the Gulf of Thailand, drilling the longest ERD well in a shallow True Vertical Depth (TVD) was clearly groundbreaking and entailed the successful management of the key operational challenges related to identification, job planning, design, technology selection, and implementation. This research illuminates the challenges and technical solutions of long ERD well and serves as an example of what can be achieved in the region and globally.


2015 ◽  
Vol 4 (4) ◽  
pp. 27-48
Author(s):  
Nediljka Gaurina-Međimurec ◽  
Borivoje Pašić ◽  
Petar Mijić

Lost circulation presents one of the major risks associated with drilling. The complete prevention of lost circulation is impossible but limiting circulation loss is possible if certain precautions are taken. Industry experience has proved that is often easier and more effective to prevent the occurrence of loss than to attempt to stop or reduce them once they have started. The problem of lost circulation was magnified considerably when operators began drilling deeper and/or depleted formations. A strategy for successful management of lost circulation should include preventative (best drilling practices, drilling fluid selection, and wellbore strengthening materials) and remedial measures when lost circulation occurs through the use of lost circulation materials. In this paper the authors present lost circulation zones and causes, potential zones of lost circulation, excessive downhole pressures causes, preventive measures, tools and methods for locating loss zones and determining the severity of loss, lost circulation materials, and recommended treatments.


Sign in / Sign up

Export Citation Format

Share Document