scholarly journals Influence of heating and moisture content on sludge drying process

2020 ◽  
Vol 1426 ◽  
pp. 012056
Author(s):  
M Flori ◽  
D Miloştean
Author(s):  
Nayara Vilela Avelar ◽  
Ana Augusta Passos Rezende ◽  
Antonio Marcos de Oliveira Siqueira ◽  
Cláudio Mudadu Silva ◽  
Angélica de Cássia Oliveira Carneiro

Considerable increases in industrial and urban wastewater sludge generation in recent years require proper treatment, such as thermal drying, and disposal. The sludge drying is a complex process involving simultaneous and coupled heat and mass transfer, which can be modeled by taking into account mass and heat balances, and assuming that water diffuses according to kinetic laws. This research implemented a simulation model for biosludge drying processes to predict the temperature and moisture distribution inside the biosludge, using the COMSOL Multiphysics® simulation program v5.2. A parametric analysis was carried out to determine the effect of initial moisture content on biosludge final temperature and moisture reduction. The simulated temperature and moisture content were experimentally validated and good agreement was observed between the simulation and experimental results. This model is a useful tool to optimize the drying process and develop better strategies for the control of the system.


Author(s):  
Jinshan Wang ◽  
Chaudhary Awais Salman ◽  
Bin Wang ◽  
Hailong Li ◽  
Eva Thorin

Abstract Handling sludge through thermal conversion is environmentally friendly, which, however, requires sludge drying. This work proposed to use the waste heat of flue gas (FG) to dry sludge. The integration of sludge drying in biomass fueled combined heat and power (CHP) plants can clearly affect the performance of downstream processes in FG cleaning, such as flue gas quench (FGQ) and flue gas condenser, and further affect the energy efficiency of CHP. In order to understand the influence, a mathematical model and an Aspen PLUS model were developed to simulate the drying process and the CHP, respectively. Based on simulations, it is found that the increase of feeding rate of sludge and the moisture content of sludge after drying can decrease the water evaporation in FGQ. An increase in the feeding rate of sludge in combination with a drop of moisture content of sludge after drying can decrease the heat recovery from FG. When using dried sludge to replace biomass, the amount of saving could be influenced by the moisture content after drying and the flow rate of sludge. Simulation results show that drying sludge to a moisture content of 40% leads to the maximum biomass saving.


2012 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Yuwana Yuwana

Experiment on catfish drying employing ‘Teko Bersayap’ solar dryer was conducted. The result of the experiment indicated that the dryer was able to increase ambient temperature up to 44% and decrease ambient relative humidity up to 103%. Fish drying process followed equations : KAu = 74,94 e-0,03t for unsplitted fish and KAb = 79,25 e-0,09t for splitted fish, where KAu = moisture content of unsplitted fish (%), KAb = moisture content of splitted fish (%), t = drying time. Drying of unsplitted fish finished in 43.995 hours while drying of split fish completed in 15.29 hours. Splitting the fish increased 2,877 times drying rate.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1590 ◽  
Author(s):  
Angelo Del Giudice ◽  
Andrea Acampora ◽  
Enrico Santangelo ◽  
Luigi Pari ◽  
Simone Bergonzoli ◽  
...  

Drying is a critical point for the exploitation of biomass for energy production. High moisture content negatively affects the efficiency of power generation in combustion and gasification systems. Different types of dryers are available however; it is known that rotary dryers have low cost of maintenance and consume 15% and 30% less in terms of specific energy. The study analyzed the drying process of woody residues using a new prototype of mobile rotary dryer cocurrent flow. Woodchip of poplar (Populus spp.), black locust (Robinia pseudoacacia L.), and grapevine (Vitis vinifera L.) pruning were dried in a rotary drier. The drying cycle lasted 8 h for poplar, 6 h for black locust, and 6 h for pruning of grapevine. The initial biomass had a moisture content of around 50% for the poplar and around 30% for grapevine and black locust. The study showed that some characteristics of the biomass (e.g., initial moisture content, particle size distribution, bulk density) influence the technical parameters (i.e., airflow temperature, rate, and speed) of the drying process and, hence, the energy demand. At the end of the drying process, 17% of water was removed for poplar wood chips and 31% for grapevine and black locust wood chips. To achieve this, result the three-biomass required 1.61 (poplar), 0.86 (grapevine), and 1.12 MJ kgdry solids−1 (black locust), with an efficiency of thermal drying (η) respectively of 37%, 12%, and 27%. In the future, the results obtained suggest an increase in the efficiency of the thermal insulation of the mobile dryer, and the application of the mobile dryer in a small farm, for the recovery of exhaust gases from thermal power plants.


Horticulturae ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 40
Author(s):  
Vincenzo Alfeo ◽  
Diego Planeta ◽  
Salvatore Velotto ◽  
Rosa Palmeri ◽  
Aldo Todaro

Solar drying and convective oven drying of cherry tomatoes (Solanum lycopersicum) were compared. The changes in the chemical parameters of tomatoes and principal drying parameters were recorded during the drying process. Drying curves were fitted to several mathematical models, and the effects of air temperature during drying were evaluated by multiple regression analyses, comparing to previously reported models. Models for drying conditions indicated a final water content of 30% (semidry products) and 15% (dry products) was achieved, comparing sun-drying and convective oven drying at three different temperatures. After 26–28 h of sun drying, the tomato tissue had reached a moisture content of 15%. However, less drying time, about 10–11 h, was needed when starting with an initial moisture content of 92%. The tomato tissue had high ORAC and polyphenol content values after convective oven drying at 60 °C. The dried tomato samples had a satisfactory taste, color and antioxidant values.


2011 ◽  
Vol 312-315 ◽  
pp. 971-976 ◽  
Author(s):  
J. Barbosa da Silva ◽  
G. Silva Almeida ◽  
W.C.P. Barbosa de Lima ◽  
Gelmires Araújo Neves ◽  
Antônio Gilson Barbosa de Lima

The Aim of this Work Is to Present a Three-Dimensional Mathematical Modelling to Predict Heat and Mass Transport inside the Industrial Brick with Rectangular Holes during the Drying Including Shrinkage and Hygrothermalelastic Stress Analysis. the Numerical Solution of the Diffusion Equation, Being Used the Finite-Volume Method, Considering Constant Thermo-Physical Properties and Convective Boundary Conditions at the Surface of the Solid, it Is Presented and Analyzed. Results of the Temperature, Moisture Content and Stress Distributions, and Drying and Heating Kinetics Are Shown and Analyzed. Results of the Average Moisture Content and Surface Temperature of the Brick along the Drying Process Are Compared with Experimental Data (T = 80.0oC and RH = 4.6 %) and Good Agreement Was Obtained. it Was Verified that the Largest Temperature, Moisture Content and Stress Gradients Are Located in the Intern and External Vertexes of the Brick.


2013 ◽  
Vol 724-725 ◽  
pp. 296-299
Author(s):  
Chun Xiang Chen ◽  
Xiao Qian Ma ◽  
Xiao Cong Li ◽  
Wei Ping Qin

To find out an alternative of coal saving, a kind of microalgae, Chlorella vulgaris (C. vulgaris) which is widespread in fresh water was studied by digital blast drying system. The effect of the moisture content, drying thickness and temperature on the drying process of C. vulgaris were investigated. The results indicated that when the drying temperature is high, the moisture content is low and the material thickness is small, the drying time is short. The drying process of C.vulgaris can be divided into two stages, and the mass loss is mainly occurred in the second stage . The results will provide guidance for design of drying process and dryer of microalgae.


1990 ◽  
Vol 22 (12) ◽  
pp. 153-161 ◽  
Author(s):  
Maryla Smollen

A number of parameters that influence sludge dewatering behaviour have been identified, but there is a lack of consensus which of these are of the greatest concern in sludge treatment strategies. Moisture retention characteristics were obtained from vacuum drying of centrifuged sludge samples to subdivide moisture into immobilised, physically and chemically bound fractions. Physically bound moisture is responsible for unsatisfactory dewatering by centrifugation. Polyelectrolyte releases some of the immobilised water, but simultaneously increases the physically bound moisture content which gives rise to large energy inputs during mechanical dewatering. Commonly used dewaterability measurements do not appear to be linked to moisture retention characteristics.


BioResources ◽  
2013 ◽  
Vol 8 (3) ◽  
Author(s):  
Erzsébet Cserta ◽  
Gergely Hegedűs ◽  
Gergely Agócs ◽  
Róbert Németh

Sign in / Sign up

Export Citation Format

Share Document