scholarly journals Influence of N-Butanol Composition on Membrane Performance in Coagulation Bath for Membrane Distillation

2021 ◽  
Vol 2007 (1) ◽  
pp. 012043
Author(s):  
Nanditha Dayanandan ◽  
Kavin Kalyaan Marappan Palanisamy ◽  
Ashish Kapoor ◽  
Prabhakar Sivaraman
2021 ◽  
Vol 18 (3) ◽  
pp. 39-47
Author(s):  
Meenakshi Yadav ◽  
Sushant Upadhyaya ◽  
Kailash Singh ◽  
Manish Vashishtha

The demand of membrane distillation (MD) has increased since last few decades for numerous applications. The membrane used in MD is hydrophobic; therefore, the focus has been emphasised on the development of a suitable membrane with desired microstructure. In this study, the flat sheet hydrophobic membrane of suitable properties has been casted with various additives such as water, ethane-di-ol, and propan-2-ol in dope solution using a non-solvent induced phase separation (NIPS) technique. The effect of water content in dope solution has been studied on casted membrane porosity and contact angle. The maximum contact angle and porosity were found to be 96° and 53.23% at 4 weight percent of water content in dope solution of PVDF polymer and di.methyl.acetamide as solvent. It was found that SEM micrograph when ethane-di-ol and propan-2-ol are used as an additive shows more finger-like pores and nodules, respectively, in the microstructure of the casted membrane. Furthermore, synergistic effects using water with other additives were also identified using SEM micrograph of casted membrane and it was observed that water with ethane-di-ol and propan-2-ol form contact angle of 98° and 105°, respectively, for 2 weight percent each additive in dope. In this study, the membrane was also cast by dissolving PVDF powder in di.methyl.acetamide solvent with lithium chloride and the effect of the temperature difference between coagulation bath and film temperature was investigated using an SEM micrograph. Overall, it was found that water content and temperature difference aid in developing hydrophobic porous membrane of desired properties for MD applications.


Desalination ◽  
2020 ◽  
Vol 493 ◽  
pp. 114653
Author(s):  
Harun Elcik ◽  
Luca Fortunato ◽  
Alla Alpatova ◽  
Sofiane Soukane ◽  
Jamel Orfi ◽  
...  

2014 ◽  
Vol 35 (17) ◽  
pp. 2147-2152 ◽  
Author(s):  
Seungjoon Chung ◽  
Chang Duck Seo ◽  
Jae-Hoon Choi ◽  
Jinwook Chung

2017 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Qtaishat ◽  
M. Khayet ◽  
T. Matsuura ◽  
K.C. Khulbe

This study aims at further improvement and development of the novel hydro–phobic/–philic composite membranes which are made specifically for membrane distillation (MD). This was attempted by studying the effect of the casting conditions during the membrane preparation process by the phase inversion method. Two variables were chosen to study, which are the evaporation time before gelation and the gelation path temperature. Some of the membranes were allowed to evaporate at room temperature for 2 or 3 minutes to study the effect of evaporation time. The temperature of the gelation path was varied to 4°C, 20°C or 60°C in order to study the gelation path temperature effect. The prepared membranes were characterized using gas permeation test, measurement of the liquid entry pressure of water (LEPw), X–ray photoelectron spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM). The effects of the casting conditions on the membrane morphology were identified, which enabled us to link the membrane morphology to the membrane performance. The membranes were then tested for desalination of 0.5 M NaCl solution by direct contact membrane distillation (DCMD) and the results were compared to commercial polytetraflouroethylene (PTFE) membrane. It was found that the membrane which was prepared with no evaporation time produced better flux than those with evaporation time. Regarding the gelation path temperature; the membrane prepared with gelation path temperature of 4°C was better than those prepared with gelation path temperature of 20 or 60°C. It should be emphasized that the DCMD flux of the membranes prepared with no evaporation time or with a gelation path temperature of 4°C was superior to the commercial one. Furthermore, all the prepared membranes were tested successfully for the desalination application. In other words, no NaCl was detected in the permeate.


2019 ◽  
Vol 6 (1) ◽  
pp. 62-81
Author(s):  
N.A.S. Muhamad ◽  
Nadzirah Mohd Mokhtar ◽  
R. Naim ◽  
W.J. Lau ◽  
A.F. Ismail

Membrane Distillation (MD) is a promising technology for separation and purification processes. It is a thermally-driven separation process which allow only vapour molecules are to pass through a porous hydrophobic membrane. MD separation is driven by the vapour pressure difference existing between the porous hydrophobic membrane surfaces unlike normal membrane processes which operate on temperature difference. This paper focus on the expectation of MD treatment process primarily for the readers who have no idea about this membrane process A brief overview is given of MD before treatment process which includes membrane materials, membrane preparation techniques, membrane characteristics, module and configuration. Membrane performance during treatment process will be highlighted. Membrane fouling which is one of the major drawback of MD will be also discussed.


2018 ◽  
Vol 2 (1) ◽  

This study investigates the membrane performance and fouling control in the bubble-assisted sweeping gas membrane distillation with high concentration saline (333 K saturated solution) as feed. The results show that longer bubbling interval (3 min) at a fixed bubbling duration of 30s can most efficiently increase the the flux enhancement ratio up to 1.518. Next, the flux increases with the gas flowrate under a relatively lower level, but tends to a plateau after the threshold level (1.2 L•min-1). Compared to non-bubbling case, the permeate flux reaches up to 1.623 fold at a higher bubble relative humidity of 80 %. It was also found that greater flux enhancement can be achieved and meanwhile dramatic flux decline can be delayed for an intermittent bubbling system with a smaller nozzle size. These results accord well with the observations of fouling deposition in situ on the membrane surface with SEM.


2019 ◽  
Vol 801 ◽  
pp. 325-330 ◽  
Author(s):  
Mohamed R. El-Marghany ◽  
Ahmed H. El-Shazly ◽  
Mohamed Sameh Abdalghany Salem ◽  
Mohamed Nabil Sabry ◽  
Norhan Nady

The aim of the present work is to investigate the performance of a newly fabricated membrane used for the membrane distillation process. Both titanium dioxide nanorods and multi-walled carbon nanotubes together were dispersed inside Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membrane. Both pure PVDF-HFP and its composite membrane with the two fillers together PVDF-HFP/TiO2-CNTs were fabricated using electrospinning technique and were imaged by using SEM. Both the fiber diameter and the average pore diameter were calculated by using ImageJ software. Static water contact angle, membrane porosity, liquid enter pressure were determined. Moreover, the membrane performance was determined by using membrane distillation (MD) system for desalination. The effect of the feed conditions such as feed temperature, flow rate, and salt concentration, were studied. The obtained results confirm the improvement in the membrane productivity up to 46% at 9000 ppm sodium chloride concentration and by about 13.7% than the pure polymeric membrane at the highest used feed sodium chloride concentration (36000 ppm).


2020 ◽  
Vol 20 (5) ◽  
pp. 1629-1642 ◽  
Author(s):  
Hoi-Fang Tan ◽  
Why-Ling Tan ◽  
N. Hamzah ◽  
M. H. K. Ng ◽  
B. S. Ooi ◽  
...  

Abstract Polyvinylidene fluoride (PVDF) membrane was improved using TiO2 nanoparticles and nanocellulose for membrane distillation crystallization in this work. Besides the addition of TiO2 nanoparticles and nanocellulose, PVDF membrane was post-modified with octadecyltrichlorosilane after phase inversion using a dual coagulation bath. The addition of hydrophilic TiO2 nanoparticles and nanocellulose reduced membrane hydrophobicity, but the dispersed TiO2 nanoparticles assisted silane modification to improve surface hydrophobicity. Besides reducing the agglomeration of TiO2 nanoparticles, nanocellulose induced the formation of larger pore size and higher porosity as proven in SEM images and gravimetric measurement, respectively. The abundant moieties of nanocellulose accelerated the exchange between solvent and non-solvent during phase inversion for the formation of large pore size and porosity, but membrane thickness increased due to the thickening effects. The modified membrane showed higher water permeate flux in membrane distillation with salt rejection greater than 97%. Severe fouling in membrane distillation crystallization was not observed.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
T. Jiříček ◽  
M. Komárek ◽  
T. Lederer

Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.


Sign in / Sign up

Export Citation Format

Share Document