scholarly journals The influence of selenium amount added into the graphite box during the selenization of solution deposited CIGSe thin films.

2021 ◽  
Vol 2053 (1) ◽  
pp. 012008
Author(s):  
G M Albalawneh ◽  
M M Ramli ◽  
M ZM Zain ◽  
Z Sauli

Abstract Cu(In,Ga)Se2 (CIGSe) semiconductor is an efficient light absorber material for thin-film solar cell technology. The sequential evaporation of precursor solution, followed by the selenization process, is a promising non-vacuum and low-cost approach for CIGSe thin-film fabrication. The main properties of CIGSe thin films are strongly affected by the post-selenization step. Hence, thorough control of selenization parameters is essential for achieving pure crystalline, large grain films needed for high-performance solar cell devices. In this study, the impact of selenium (Se) amount added during the selenization step was evaluated. The structural, morphological, and compositional properties of the selenized thin films were investigated. The CIGSe precursor film was deposited by a spin-coating technique using a thiol/amine-based solution, followed by annealing with different Se amounts (100, 200, and 300 mg) within a partially closed small round graphite container. In all cases, uniform films of 1.2–1.5 µm thickness with a well-defined single chalcopyrite phase were obtained. It was observed that the grain size and Se content increased with increasing Se mass added. Moreover, the sample selenized with 200 mg Se resulted in higher surface coverage, thinner fine-grained layer, and less MoSe2 formation than the excess Se samples.

2013 ◽  
Vol 310 ◽  
pp. 38-41 ◽  
Author(s):  
Ke Gao Liu ◽  
Nian Jing Ji ◽  
Nai Gen Li

The patent provides one method for preparing of CuInSe2 (CIS) photoelectric thin film used in solar cell. It belongs to the field of photoelectric film preparation technology. The patent includes the following steps. First clean glass substrate; Secondly dissolve CuCl2•2H2O, InCl3•4H2O, SeO2 by different solvents, then mix the solution and adjust the pH of solution to obtain homogeneous precursor solution; Thirdly drop the precursor solution to the glass substrate, spin coating and dry for precursor film. Then put the precursor film into sealed container which contains the hydrazine hydrate (N2H4•H2O), and keep the sample not in contact with hydrazine. Finally the sample is heated at some temperature, which makes it cool and dry naturally, CuInSe2 photovoltaic thin film is obtained. The method used in the patent does not require high temperature, high vacuum conditions and sophisticated equipment. So it has the advantages of low cost, high efficiency and simplicity. It is easy to control the composition and structure of the CuInSe2 photovoltaic thin film. And the CuInSe2 photovoltaic thin film is pure phase, continuous and uniform. So it is one feasible process to prepare high performance copper indium selenide thin film.


Author(s):  
Dinesh Pathak ◽  
Sanjay Kumar ◽  
Sonali Andotra ◽  
Jibin Thomas ◽  
Navneet Kaur ◽  
...  

In this study, we have investigated new tailored organic semiconductors materials for the optoelectronic application, such as organic solar cells. The carbon-based organic semiconductor material has promising advantages in organic thin-film form. Moreover, due to its low cost, organic thin-films are suitable and cheaper than inorganic thin-film. The band gap of organic semiconductors materials can be tuned and mostly lies between 2.0eV to 4eV and the optical absorption edge of organic semiconductors typically lies in between 1.7eV to 3eV. They can be easily tailored by modifying the carbon chain and legends and looks promising for engineering the band gap to harness solar spectrum. In this work, with new tailored organic semiconductors the solution route is explored which is low cost processing method. (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3,4-dimethoxyaniline thin-films are processed by spin coating method with changing concentration such as 0.05 wt% and 0.08 wt%. Thin films of Organic semiconductors were prepared on glass substrate and annealed at 55°C. The structural and optical behaviour of (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3,4-dimethoxyaniline organic semiconductors thin films is studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and UV-Visible Spectroscopy technique. The XRD data of synthesized sample suggests the Nano crystallinity of the Organic layers. The SEM micrographs shows the dense packing when we increase the wt% 0.05 to 0.08. Analysis of the optical absorption measurements found that the engineered band gap of synthesized thin films are 2.18eV, 2.35eV, 2.36eV, 2.52eV and 2.65eV which suggest suitability for applications of Optoelectronic devices such as solar cell. Such light weight, eco-friendly and disposable new carbon based materials seems to have potential to replace other traditional hazardous heavy materials for future eco-friendly flat fast electronics. Keywords: Thin-film, solar cell, tailored organic semiconductors, XRD, SEM, UV-Vis spectroscopy.


2020 ◽  
Vol 2 (1) ◽  
pp. 368-376 ◽  
Author(s):  
Nan Chen ◽  
Michael R. Scimeca ◽  
Shlok J. Paul ◽  
Shihab B. Hafiz ◽  
Ze Yang ◽  
...  

A high-performance n-type thermoelectric Ag2Se thin film via cation exchange using a low-cost solution processed Cu2Se template.


2016 ◽  
Vol 4 (20) ◽  
pp. 4478-4484 ◽  
Author(s):  
Ao Liu ◽  
Guoxia Liu ◽  
Huihui Zhu ◽  
Byoungchul Shin ◽  
Elvira Fortunato ◽  
...  

Eco-friendly IWO thin films are fabricated via a low-cost solution process and employed as channel layers in thin-film transistors.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Tsung-Wei Chang ◽  
Chao-Te Liu ◽  
Wen-Hsi Lee ◽  
Yu-Jen Hsiao

In this study, commercially available white paint is used as a pigmented dielectric reflector (PDR) in the fabrication of a low-cost back electrode stack with an Al-doped ZnO (AZO) layer for thin-film silicon solar cell applications. An initial AZO film was deposited by the radio-frequency magnetron sputtering method. In order to obtain the highest transmittance and lowest resistivity of AZO film, process parameters such as sputtering power and substrate temperature were investigated. The optimal 100-nm-thick AZO film with low resistivity and high transmittance in the visible region are 6.4 × 10−3 Ω·cm and above 80%, respectively. Using glue-like white paint doped withTiO2 nanoparticles as the PDR enhances the external quantum efficiency (EQE) of a microcrystalline silicon absorptive layer owing to the doped white particles improving Fabry–Pérot interference (FPI), which raises reflectance and scattering ability. To realize the cost down requirement, decreasing the noble metal film thickness such as a 30-nm-thick silver reflector film, and a small doping particle diameter (D50 = 135 nm) and a high solid content (20%) lead to FPI improvement and a great EQE, which is attributed to improved scattering and reflectivity because of optimum diameter (Dopt) and thicker PDR film. The results indicate that white paint can be used as a reflector coating in low-cost back-electrode structures in high-performance electronics.


2021 ◽  
Vol 23 (09) ◽  
pp. 1196-1206
Author(s):  
C.S.A. Raj ◽  
◽  
S. Sebastian ◽  
Susai Rajendran ◽  
◽  
...  

Cu2ZnSnS4 generally abridged as CZTS is a potential material for economical thin film solar cells, due to its appropriate band gap energy of around 1.5 eV and great absorption coefficient of above 104 cm-1. All the constituents of this material are plentiful in the earth’s crust, and they are non-hazardous making it an elegant alternative. Subsequent to the early achievement of the CZTS based solar cell with its light to electrical conversion efficiency of 0.6%, significant advancement in this research area has been attained, particularly in the last seven years. Currently, the conversion effectiveness of the CZTS thin film solar cell has enhanced to 24%. More than 500 papers on CZTS have been available and the greater part of these converses the preparation of CZTS thin films by diverse methods. Until now, many physical and chemical methods have been engaged for preparing CZTS thin films. Amongst them, spray pyrolysis is a flexible deposition technique. Spray pyrolysis is a simple deposition technique that finds use in widespread areas of thin film deposition research. This method is appropriate for depositing good quality films with low cost, clean deposition, and simplicity and flexibility in the manufacturing design. This script, reviews the synthesis of CZTS semiconductor thin films deposited by spray pyrolysis. This analysis initiates with a portrayal of the spray pyrolysis system, and then establish the CZTS and preparation of the CZTS precursor for coating. A review of spray pyrolysis of CZTS thin films are discussed in detail. To conclude, we present perspectives for advancements in spray pyrolysis for a CZTS based solar cell absorber layer.


2020 ◽  
Vol 301 ◽  
pp. 35-42
Author(s):  
Nabihah Kasim ◽  
Zainuriah Hassan ◽  
Way Foong Lim ◽  
Sabah M. Mohammad ◽  
Hock Jin Quah

In this work, ZnO thin films were prepared by the low-cost sol-gel deposition method onto six different substrates (glass, ITO coated glass, sapphire (Al2O3), p-Si, p-GaN and polyethylene terephthalate (PET)) to study the effects of these substrates on the morphological and structural properties of the produced films. Precursor solution is Zinc acetate dihydrate based dissolved in ethanol with monoethanolamine (C2H7NO) added to act as a stabilizing agent to the sol. The corresponding ZnO thin films were characterized using field emission scanning electron microscopy (FESEM), high resolution X-ray diffraction (XRD) and atomic force microscopy (AFM). Results revealed distinct morphological and structural properties of ZnO thin films deposited on each substrate. The most uniform morphology was identified on glass, owing to the acquisition of the averagely stable grain sizes (58 nm – 61 nm) and thin film thicknesses (280 nm – 325 nm). High resolution XRD analysis showed that the films deposited on glass, ITO, p-Si, and p-GaN were attributed to hexagonal crystallite structures while the films deposited on sapphire and PET substrates exhibited amorphous phases. Amongst the samples, the ZnO thin film spin coated on p-Si demonstrated preferred orientation in (002) direction.


Author(s):  
K.M. Jones ◽  
F.S. Hasoon ◽  
A.B. Swartzlander ◽  
M.M. Al-Jassim ◽  
T.L. Chu ◽  
...  

Polycrystalline thin films of II-VI semiconductors on foreign polycrystalline (or amorphous) substrates have many applications in optoelectronic devices. In contrast to the extensive studies of the heteroepitaxial growth of compound semiconductors on single-crystal substrates, the nucleation and growth of thin films of II-VI compounds on foreign substrates have received little attention, and the properties of these films are often controlled empirically to optimize device performance. A better understanding of the nucleation, growth, and microstructure will facilitate a better control of the structural and electrical properties of polycrystalline semiconductor films, thereby improving the device characteristics. Cadmium telluride (CdTe) has long been recognized as a promising thin-film photovoltaic material. Under NREL's sponsorship, the University of South Florida has recently developed a record high efficiency (14.6% under global AM1.5 conditions) thin-film CdS/CdTe heterojunction solar cell for potential low-cost photovoltaic applications. The solar cell has the structure:glass (substrate)/SnO2:F/CdS/CdTe/HgTe (contact)The CdS films were grown from an aqueous solution, while the CdTe films were deposited by the closespaced sublimation method.


RSC Advances ◽  
2015 ◽  
Vol 5 (109) ◽  
pp. 89635-89643 ◽  
Author(s):  
Priyanka U. Londhe ◽  
Ashwini B. Rohom ◽  
Nandu B. Chaure

Highly crystalline and stoichiometric CIS thin films have been electrodeposited from non-aqueous bath at temperature 130 °C. Superstrate solar cell structure (FTO/CdS/CIS/Au) exhibited 4.5% power conversion efficiency.


Sign in / Sign up

Export Citation Format

Share Document