scholarly journals In situ U g-value measurement on three different glazing types

2021 ◽  
Vol 2069 (1) ◽  
pp. 012134
Author(s):  
F Paschke ◽  
N Bishara ◽  
I Schulz ◽  
C Kocer ◽  
J Schneider ◽  
...  

Abstract This study presents in situ monitoring data of three different glazing systems over a period of one year. An insulated glass unit (IGU), a Vacuum Insulated Glass hybrid unit (VIG-hybrid) and an opaque architectural insulation module (AIM) were monitored under the equivalent environmental condition in this study. Different issues were observed and analyzed. It was found that the Ug-value cited by the manufacturers agrees with the Ug-values derived from the measured data, to within less than 5 % for the IGU and the VIG-hybrid. The consistency of the Ug-value of each glazing types one year after the start of monitoring was validated for similar environmental conditions. Depending on the magnitude of the resistance to heat flow, an increasing Ug-value was observed for a higher temperature difference between the inside and outside environments. The effect is much more significant for the glazing type with the largest Ug-value (IGU) and less significant for the glazing types with a high thermal resistance (VIG-hybrid, AIM).

2019 ◽  
Author(s):  
Jisue Moon ◽  
Carter Abney ◽  
Dmitriy Dolzhnikov ◽  
James M. Kurley ◽  
Kevin A. Beyer ◽  
...  

The local structure of dilute CrCl<sub>3</sub> in a molten MgCl<sub>2</sub>:KCl salt was investigated by <i>in situ</i> x-ray absorption spectroscopy (XAS) at temperatures from room temperature to 800<sup>o</sup>C. This constitutes the first experiment where dilute Cr speciation is explored in a molten chloride salt, ostensibly due to the compounding challenges arising from a low Cr concentration in a matrix of heavy absorbers at extreme temperatures. CrCl<sub>3</sub> was confirmed to be the stable species between 200 and 500<sup>o</sup>C, while mobility of metal ions at higher temperature (>700<sup>o</sup>C) prevented confirmation of the local structure.


Proceedings ◽  
2018 ◽  
Vol 2 (10) ◽  
pp. 565
Author(s):  
Nguyen Nguyen Vu ◽  
Le Van Trung ◽  
Tran Thi Van

This article presents the methodology for developing a statistical model for monitoring salinity intrusion in the Mekong Delta based on the integration of satellite imagery and in-situ measurements. We used Landsat-8 Operational Land Imager and Thermal Infrared Sensor (Landsat- 8 OLI and TIRS) satellite data to establish the relationship between the planetary reflectance and the ground measured data in the dry season during 2014. The three spectral bands (blue, green, red) and the principal component band were used to obtain the most suitable models. The selected model showed a good correlation with the exponential function of the principal component band and the ground measured data (R2 > 0.8). Simulation of the salinity distribution along the river shows the intrusion of a 4 g/L salt boundary from the estuary to the inner field of more than 50 km. The developed model will be an active contribution, providing managers with adaptation and response solutions suitable for intrusion in the estuary as well as the inner field of the Mekong Delta.


1991 ◽  
Vol 237 ◽  
Author(s):  
Toyohiko J. Konno ◽  
Robert Sinclair

ABSTRACTThe crystallization of sputter-deposited Si/Al amorphous alloys was examined by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). In-situ high-resolution TEM reveals the existence of an Al layer between the amorphous matrix and the growing crystalline phase. The activation energy for the growth is about 1.2eV, roughly corresponding to the activation energy of Si diffusion in Al. These two observations support the view that a crystallization mechanism, in which an Al buffer layer provides the shortest reaction path, is responsible for the reaction. The product microstructure exhibits secondary crystallization at a higher temperature.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yusuke Hiejima ◽  
Takumitsu Kida ◽  
Koh-hei Nitta

AbstractIn situ Raman spectroscopy is applied for polyethylene solid under various environments to elucidate the morphological and conformational changes. The trans conformation retains up to higher temperature for high-density polyethylene, reflecting higher stability of the orthorhombic crystals composed of stacked trans chains. It is suggested that the conversion of the non-crystalline trans chains to the crystalline phase is the microscopic origin of thermal history in the crystallinity, whereas the transformation between the trans and gauche conformers is practically in thermal equilibrium. Microscopic and dynamic mechanism of deformation during uniaxial stretching is investigated for the molecular orientation and the microscopic load sharing on the crystalline and amorphous chains. Lower crystallinity results in smoother and higher orientation toward the stretching direction, as well as higher load on the amorphous chains, during tensile elongation.


2005 ◽  
Vol 37 (5) ◽  
pp. 373-382 ◽  
Author(s):  
William B. SANDERS

The utility of plastic cover slips as a substratum for in situ study of lichen developmental stages is further explored in a neotropical foliicolous lichen community and in a European temperate corticolous community. Twenty-one months after placement in the tropical forest, the cover slips bore foliicolous lichen thalli with several species producing characteristic ascocarps and ascospores, indicating the suitability of the substratum for completion of the life cycle of these lichens. On cover slips placed within the temperate corticolous community, lichen propagules anchored to the substratum with relatively short attachment hyphae but did not develop further within the one year observation period. Intimately intermixed microbial communities of short-celled, mainly pigmented fungi and chlorophyte algae developed upon the transparent substratum. Among the algae, Trebouxia cells, often in groups showing cell division and without associated lichenizing hyphae, were commonly observed. The potential significance of the free-living populations in the life cycle of Trebouxia and in those of Trebouxia-associated lichen fungi is discussed.


2021 ◽  
Author(s):  
Rakshith Naik ◽  
Yetzirah Urthaler ◽  
Scot McNeill ◽  
Rafik Boubenider

Abstract Certain subsea jumper design features coupled with operating conditions can lead to Flow Induced Vibration (FIV) of subsea jumpers. Excessive FIV can result in accumulation of allowable fatigue damage prior to the end of jumper service life. For this reason, an extensive FIV management program was instated for a large development in the Gulf of Mexico (GOM) where FIV had been observed. The program consisted of in-situ measurement, modeling and analysis. Selected well and flowline jumpers were outfitted with subsea instrumentation for dedicated vibration testing. Finite Element (FE) models were developed for each jumper and refined to match the dynamic properties extracted from the measured data. Fatigue analysis was then carried out using the refined FE model and measured response data. If warranted by the analysis results, action was taken to mitigate the deleterious effects of FIV. Details on modeling and data analysis were published in [5]. Herein, we focus on the overall findings and lessons learned over the duration of the program. The following topics from the program are discussed in detail: 1. In-situ vibration measurement 2. Overall vibration trends with flow rate and lack of correlation of FIV to flow intensity (rho-v-squared); 3. Vibration and fatigue performance of flowline jumpers vs. well jumpers 4. Fatigue analysis conservatism Reliance on screening calculations or predictive FE analysis could lead to overly conservative operational limits or a high degree of fatigue life uncertainty in conditions vulnerable to FIV. It is proposed that in-situ vibration measurements followed by analysis of the measured data in alignment with operating conditions is the best practice to obtain a realistic understanding of subsea jumper integrity to ensure safe and reliable operation of the subsea system. The findings from the FIV management program provide valuable insight for the subsea industry, particularly in the areas of integrity management of in-service subsea jumpers; in-situ instrumentation and vibration measurements and limitations associated with predictive analysis of jumper FIV. If learnings, such as those discussed here, are fed back into design, analysis and monitoring guidelines for subsea equipment, the understanding and management of FIV could be dramatically enhanced compared to the current industry practice.


Cornea ◽  
2013 ◽  
Vol 32 (5) ◽  
pp. 644-652 ◽  
Author(s):  
Michiel H. A. Luger ◽  
Tobias Ewering ◽  
Samuel Arba-Mosquera

2014 ◽  
Vol 8 ◽  
pp. 105-112
Author(s):  
HM Zakir Hossain ◽  
Md Sultan-Ul-Islam ◽  
Quazi Hasna Hossain

In the present experiment, concentration, distribution and sources of penta-aromatic hydrocarbons in seven drill core and outcrop samples from Jaintia and Barail Group mudstones, northeastern Bengal Basin, Bangladesh have been studied. Gas chromatography-mass spectrometry (GC-MS) was used to obtain composition details about the sedimentary organic matter (OM). Mudstone samples were found to contain relatively high penta-aromatic hydrocarbon abundances in the lower Jaintia Group than in the overlying Barail Group. High concentration of perylene suggests terrigenous sources and significantly higher content of total organic carbon in the samples. A biogenic origin of perylene therefore indicates oxygen deficient environmental condition for deposition of OM. Perylene over pentacyclic aromatic hydrocarbon isomers regulating in-situ diagenetic origin. DOI: http://dx.doi.org/10.3329/jles.v8i0.20154 J. Life Earth Sci., Vol. 8: 105-112, 2013


Sign in / Sign up

Export Citation Format

Share Document