scholarly journals Study on Crystallization Behavior of Polypropylene Induced by Nucleating Agent

2021 ◽  
Vol 2076 (1) ◽  
pp. 012046
Author(s):  
Lanhua Wang ◽  
Qi Liu ◽  
Haitian Yu ◽  
Xi Wu ◽  
Shufei Xu

Abstract The melting and recrystallization behavior of -iPP crystal induced by β -nucleating agent was studied. A new type of α-modification has been developed by self-seeding process. The growth process of these crystals is just like “photographic development process.” Crystalline phase transformation and the memory effect caused by local order was observed during the melting and annealing process. A high temperature is sufficient to destroy the local order and the β-nucleating agent efficiently induces formation of β-form.

Author(s):  
T. Sato ◽  
S. Kitamura ◽  
T. Sueyoshl ◽  
M. Iwatukl ◽  
C. Nielsen

Recently, the growth process and relaxation process of crystalline structures were studied by observing a SI nano-pyramid which was built on a Si surface with a UHV-STM. A UHV-STM (JEOL JSTM-4000×V) was used for studying a heated specimen, and the specimen was kept at high temperature during observation. In this study, the nano-fabrication technique utilizing the electromigration effect between the STM tip and the specimen was applied. We observed Si atoms migrated towords the tip on a high temperature Si surface.Clean surfaces of Si(lll)7×7 and Si(001)2×l were prepared In the UHV-STM at a temperature of approximately 600 °C. A Si nano-pyramid was built on the Si surface at a tunneling current of l0nA and a specimen bias voltage of approximately 0V in both polarities. During the formation of the pyramid, Images could not be observed because the tip was stopped on the sample. After the formation was completed, the pyramid Image was observed with the same tip. After Imaging was started again, the relaxation process of the pyramid started due to thermal effect.


Author(s):  
T.R. Dinger ◽  
G. Thomas

The use of Si3N4, alloys for high temperature, high stress structural applications has prompted numerous studies of the oxynitride glasses which exist as intergranular phases in their microstructures. Oxynitride glasses have been investigated recently in their bulk form in order to understand their crystallization behavior for subsequent Si3N4 applications and to investigate their worth as glass-ceramic precursors. This research investigates the crystallization sequence of a glass having a normalized composition of Y26Si30Al11 ON11 and lying in the A1N-Y2O3-SiO2 section of the Y-Si-Al-O-N system. Such glasses exist as intergranular phases in the technologically important Y2O3/Al2O3-fluxed Si3N4 alloys.


Author(s):  
K Das Chowdhury ◽  
R. W. Carpenter ◽  
W. Braue

Research on reaction-bonded SiC (RBSiC) is aimed at developing a reliable structural ceramic with improved mechanical properties. The starting materials for RBSiC were Si,C and α-SiC powder. The formation of the complex microstructure of RBSiC involves (i) solution of carbon in liquid silicon, (ii) nucleation and epitaxial growth of secondary β-SiC on the original α-SiC grains followed by (iii) β>α-SiC phase transformation of newly formed SiC. Due to their coherent nature, epitaxial SiC/SiC interfaces are considered to be segregation-free and “strong” with respect to their effect on the mechanical properties of RBSiC. But the “weak” Si/SiC interface limits its use in high temperature situations. However, few data exist on the structure and chemistry of these interfaces. Microanalytical results obtained by parallel EELS and HREM imaging are reported here.


Author(s):  
H. Kung ◽  
T. R. Jervis ◽  
J.-P. Hirvonen ◽  
M. Nastasi ◽  
T. E. Mitchell ◽  
...  

MoSi2 is a potential matrix material for high temperature structural composites due to its high melting temperature and good oxidation resistance at elevated temperatures. The two major drawbacksfor structural applications are inadequate high temperature strength and poor low temperature ductility. The search for appropriate composite additions has been the focus of extensive investigations in recent years. The addition of SiC in a nanolayered configuration was shown to exhibit superior oxidation resistance and significant hardness increase through annealing at 500°C. One potential application of MoSi2- SiC multilayers is for high temperature coatings, where structural stability ofthe layering is of major concern. In this study, we have systematically investigated both the evolution of phases and the stability of layers by varying the heat treating conditions.Alternating layers of MoSi2 and SiC were synthesized by DC-magnetron and rf-diode sputtering respectively. Cross-sectional transmission electron microscopy (XTEM) was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures.


2019 ◽  
Author(s):  
F.X. Bai ◽  
S.J. Zheng ◽  
Y.X. Wang ◽  
J. Pan ◽  
J.H. Yao ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 84
Author(s):  
Pramod Koshy ◽  
Naomi Ho ◽  
Vicki Zhong ◽  
Luisa Schreck ◽  
Sandor Alex Koszo ◽  
...  

Fly ash is an aluminosilicate and the major by-product from coal combustion in power stations; its increasing volumes are major economic and environmental concerns, particularly since it is one of the largest mineral resources based on current estimates. Mullite (3Al2O3·2SiO2) is the only stable phase in the Al2O3-SiO2 system and is used in numerous applications owing to its high-temperature chemical and mechanical stabilities. Hence, fly ash offers a potential economical resource for mullite fabrication, which is confirmed by a review of the current literature. This review details the methodologies to utilise fly ash with different additives to fabricate what are described as porous interconnected mullite skeletons or dense mullite bodies of approximately stoichiometric compositions. However, studies of pure fly ash examined only high-Al2O3 forms and none of these works reported long-term, high-temperature, firing shrinkage data for these mullite bodies. In the present work, high-SiO2 fly ashes were used to fabricate percolated mullite, which is demonstrated by the absence of firing shrinkage upon long-term high-temperature soaking. The major glass component of the fly ash provides viscosities suitably high for shape retention but low enough for ionic diffusion and the minor mullite component provides the nucleating agent to grow mullite needles into a direct-bonded, single-crystal, continuous, needle network that prevents high-temperature deformation and isolates the residual glass in the triple points. These attributes confer outstanding long-term dimensional stability at temperatures exceeding 1500 °C, which is unprecedented for mullite-based compositions.


CrystEngComm ◽  
2020 ◽  
Vol 22 (44) ◽  
pp. 7601-7606
Author(s):  
Chunxiao Wang ◽  
Hong-an Ma ◽  
Liangchao Chen ◽  
Xinyuan Miao ◽  
Liang Zhao ◽  
...  

Here, a new type of supercharged cell assembly is proposed that can effectively reduce the oil pressure during high-pressure, high-temperature (HPHT) diamond synthesis.


Sign in / Sign up

Export Citation Format

Share Document