scholarly journals Design of Controller for Electrical Vehicle to Grid Power

2021 ◽  
Vol 2089 (1) ◽  
pp. 012011
Author(s):  
K K Baghmare ◽  
P M Daigavane

Abstract This paper prescribed the design of controller for electrical vehicle to Grid power, by using this controller improve the power requirement of grid and reactive power compensation capability. Bidirectional converter is very helpful during on peak load demand. During off peak load demand grid will supply the power to the battery and charge the battery. During on peak load demand excess power of battery will supply to the grid. The concept aggregator is depicted in the figure 2. (Aggregator collects the power from all electrical vehicle first then it supply to the grid). This modern electrical vehicle technology proposed the distribution generation Methodology. All the control strategies of modern electrical vehicle to grid is proposed like smart charging or discharging of batteries during off peak load demand and On peak load demand respectively. V2G controller allow the active power it act as an ancillary services to grid. Electrical vehicle controller has ability to exchange the active or reactive power capability. Simulation of bidirectional AC/DC and DC/DC controller and their control circuit are analyzed by using matlab Simulink software.

2018 ◽  
Vol 8 (11) ◽  
pp. 2019 ◽  
Author(s):  
Qingsong Wang ◽  
Panhong Chen ◽  
Fujin Deng ◽  
Ming Cheng ◽  
Giuseppe Buja

The concept of electric springs (ESs) has been proposed as a new solution for stabilizing power grid fed by intermittent renewable energy sources. With a battery or active power source (DC, on the inside), the ESs can provide both active and reactive power compensations. So far, three typical topologies of single-phase ESs have been reported. Unlike traditional devices where power generation follows the load demand, the ESs are associated with non-critical loads form the so-called smart loads that transfer the fluctuated power to the non-critical loads, adaptively, according to the intermittent nature of power generation. After reviewing the main control strategies of single-phase ESs, the paper analyzes their advantages and disadvantages as well as their suitable applications. Comparisons among different control strategies on a specific topology version are implemented. Finally, conclusions and possible future trends are pointed out.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 184
Author(s):  
Sehyun Kim ◽  
Kyeon Hur ◽  
Jongseo Na ◽  
Jongsu Yoon ◽  
Heejin Kim

This paper proposes a generic analysis framework for a grid supporting modular multilevel converter (MMC)-high voltage DC (HVDC) in a multi-infeed of line commutated converter (LCC) and MMC (MILM) system. MMC-HVDC can support the grid by compensating for the exact reactive power consumptions within the MMC-HVDC system and the varying power system conditions in the MILM system. Maximum active/reactive power capability (MPQC) curve and PQ loading curve comparison process is introduced to properly design a grid supporting MMC-HVDC. While the MPQC curve presents the maximum PQ range of the MMC-HVDC system based on the submodule capacitance value and the modulation index, the PQ loading curve presents the reactive power requirement from the power system that MMC-HVDC needs to compensate. Finally, the comparison of these two curves yields the proper value of submodule capacitance and the modulation index for sufficiently supporting the MILM system. The proposed framework is validated with detailed PSCAD/EMTDC simulation; it demonstrated that it could be applied to various power system conditions.


Author(s):  
Chandra Shekher Purohit ◽  
Geetha M. ◽  
Padmanaban Sanjeevikumar ◽  
Pandav Kiran Maroti ◽  
Shruti Swami ◽  
...  

<span>A sliding mode controller for a non-isolated DC/DC, bidirectional converter is presented and comparative study with PI controller is done along with ISE analysis, in order to do performance analysis. The proposed system can be utilized in many applications such as electrical vehicle, distributed power generation or small grids. Second theorem of Lyapunov is utilized and stability of the closed loop system is mathematically proven. The adopted control strategy achieves effective output voltage regulation and good dynamic stability. Rejection of disturbance is also an inherent characteristic of this technique. Furthermore, it is illustrated that the system can successfully follow changes of load demand and compensates sudden disturbances in operating condition. The design is evaluated and verified using Matlab/Simulink. Results of Matlab simulation are provided to show the feasibility of the proposed system and effectiveness of control method. Simulation results show that this technique can provide a considerable edge over control techniques which are presently available (applied) over this type of converter.</span>


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3784
Author(s):  
Osama Saadeh ◽  
Anwar Al Nawasrah ◽  
Zakariya Dalala

Power quality issues have recently become a source of major concern due to the large increase in load demand and the addition of various sources of disturbance at the distribution level. Power quality mainly refers to voltage quality. Sudden load variations can lead to a fall in the line voltage magnitude, creating what is called a voltage sag. Many solutions have been proposed and implemented for voltage sag compensation. Power electronics-based solutions such as grid-connected converters and AC/DC schemes are considered basic units for transient voltage fault ride-through capability. This paper describes a multifunctional intelligent bidirectional electrical vehicle (EV) charger that is able to charge the EV battery at different power ratings in addition to voltage sag compensation. The performance of the proposed system is verified and validated through MATLAB/Simulink simulations (R2020A). The proposed solution can effectively meet three main requirements: charging the EV battery at different power ratings, detecting the voltage sag event, and providing the required active and reactive power compensation for voltage sag compensation.


2021 ◽  
Author(s):  
Atif Iqbal ◽  
Shirazul Islam ◽  
Mohammad Meraj

The research work deals with the implementation of various chargers used for electric vehicles in the context of Qatar. These chargers are categorized as slow, fast, and super-fast chargers. The electric vehicles not only lead to a reduction in carbon footprint, but the V2X mode of operation of EVs implemented with the help of a bidirectional converter is used to provide ancillary services in the system such as shaving peak and valley in load demand, frequency, and voltage regulation, balance the supply and demand for active power and reactive power, compensate grid current harmonics, improve power quality, provide reactive power compensation and improve system stability. Due to the above-mentioned advantages, V2X mode of operation will be explored in this research work.


2021 ◽  
pp. 0309524X2110241
Author(s):  
Nindra Sekhar ◽  
Natarajan Kumaresan

To overcome the difficulties of extending the main power grid to isolated locations, this paper proposes the local installation of a combination of three renewable energy sources, namely, a wind driven DFIG, a solar PV unit, a biogas driven squirrel-cage induction generator (SCIG), and an energy storage battery system. In this configuration one bi-directional SPWM inverter at the rotor side of the DFIG controls the voltage and frequency, to maintain them constant on its stator side, which feeds the load. The PV-battery also supplies the load, through another inverter and a hysteresis controller. Appropriately adding a capacitor bank and a DSTATCOM has also been considered, to share the reactive power requirement of the system. Performance of various modes of operation of this coordinated scheme has been studied through simulation. All the results and relevant waveforms are presented and discussed to validate the successful working of the proposed system.


2021 ◽  
Vol 106 ◽  
pp. 103285
Author(s):  
Muhammad Akram ◽  
Kris Milkowski ◽  
Jon Gibbins ◽  
Mohammed Pourkashanian
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document