scholarly journals Study on creep perform of epoxy resin for launch canister

2021 ◽  
Vol 2125 (1) ◽  
pp. 012054
Author(s):  
Fu-Quan Wei ◽  
Wen-chao Yang ◽  
Zhe-xian Zhan ◽  
Cun-gui Yu

Abstract In order to study the creep perform of the launch canister, creep perform of the epoxy resin (matrix material) were studied. The creep model of epoxy resin was established based on Bailey-Norton model. Constant stress tensile creep tests at room temperature were carried out on epoxy resin specimens under different stress levels, and the model parameters were obtained by fitting the test data. The finite element model of the specimen was established in the ABAQUS software and the tensile simulation was carried out. The simulation results are consistent with the test results. Results show that time-hardening model can describe the short-term creep perform of epoxy resin with error less than 20%.

2019 ◽  
Vol 43 (2) ◽  
pp. 199-208 ◽  
Author(s):  
Cun-Gui Yu ◽  
Tong-Sheng Sun ◽  
Guang-Yuan Xiao

In this paper, the creep performance of a multi-barrel rocket launch canister under long-term stacking storage is studied. Based on the Bailey–Norton model, a creep model for the frame material of a launch canister was established. Constant stress tensile creep tests under different stress levels at room temperature were carried out on the frame materials of the launch canister and the creep model parameters were obtained by test data fitting. The three-dimensional finite element model of the launch canister was established in the ABAQUS software environment and the creep deformation of the launch canister after long-term stacking storage was studied. The results indicated that the bottom layer of the launch canister frame presented an extended residual deformation when the stacking storage solution with the original support pad was used. Therefore, a position adjustment program of the support pad was put forward. The residual deformation of the launch canister frame after long-term storage could be significantly reduced, thus the performance requirements for the launch canister are guaranteed.


2019 ◽  
Vol 28 (6) ◽  
pp. 388-397
Author(s):  
Jai Inder Preet Singh ◽  
Sehijpal Singh ◽  
Vikas Dhawan

In this work, partially biodegradable green composites have been developed with the help of compression molding technique. Jute fibers were selected as a reinforcement and epoxy resin as matrix material. The influence of alkali treatment on various mechanical properties of jute/epoxy composites was investigated, with concentrations ranging from 1%, 3%, 5%, 7%, and 9% NaOH solution. Various test results indicate that with an increase in concentration, tensile and flexural strength increases up to 5% concentration of NaOH, thereafter both the properties decrease, but impact strength increases up to 7% concentration and thereafter decreases. The results of mechanical characterizations were further validated through the study of morphology with scanning electron microscopy and Fourier transform infrared analysis. The optimal concentration of 5% concentration for alkali treatment of fibers have been suggested.


2007 ◽  
Vol 353-358 ◽  
pp. 533-536
Author(s):  
Bong Min Song ◽  
Jong Yup Kim ◽  
Joon Hyun Lee

Creep testing of Alloy 718 has been carried out at various loads in the temperature range near 650°C in constant load control mode in order to understand how to predict the creep behavior including tertiary creep. The test results have been used for evaluating the existed models, such as Theta projection and Omega method that have been widely used for predicting long term creep strain and rupture time. After determining variables and material parameters of each method with the test results, estimated creep data from each model have been compared with the each measured creep data from the creep tests. The root cause of the discrepancy between estimated and measured data has been analyzed in order to improve the existed methods. The reliability of the improved model has been evaluated in relation to creep data.


1997 ◽  
Vol 119 (3) ◽  
pp. 262-265 ◽  
Author(s):  
S. R. White ◽  
A. B. Hartman

Little experimental work has been done to characterize how the viscoelastic properties of composite material matrix resins develop during cure. In this paper, the results of a series of creep tests carried out on 3501–6 epoxy resin, a common epoxy matrix material for graphite/epoxy composites, at several different cure states is reported. Beam specimens were isothermally cured at increasing cure temperatures to obtain a range of degrees of cure from 0.66 to 0.99. These specimens were then tested in three-point bending to obtain creep compliance over a wide temperature range. The master curves and shift functions for each degree of cure case were obtained by time-temperature superposition. A numerical technique and direct inversion were used to calculate the stress relaxation modulus master curves from the creep compliance master curves. Direct inversion was shown to be adequate for fully cured specimens, however it underpredicts the relaxation modulus and the transition for partially cured specimens. Correlations with experimental stress relaxation data from Kim and White (1996) showed that reasonably accurate results can be obtained by creep testing followed by numerical conversion using the Hopkins-Hamming method.


2013 ◽  
Vol 639-640 ◽  
pp. 493-497
Author(s):  
Woo Tai Jung ◽  
Sung Yong Choi ◽  
Young Hwan Park

The hydraulic loading device commonly used for creep test necessitates continuous recharge of the hydraulic pressure with time and is accompanied by slight variation of the permanent load at each recharge. Therefore, accurate test results cannot be obtained for long-term creep tests requiring time-dependent behavioral analysis during more than 6 months. This study conducts creep test as part of the analysis of the long-term characteristics of fiber-reinforced lean concrete sub-base of pavement. The creep test is executed using the new load-amplifier device not a conventional loading device. Since the results of the preliminary verification test on the new creep test device show that constant permanent load is applied without significant variation, it can be expected that more accurate measurement of the creep will be possible in a long-term compared to the conventional hydraulic device. In addition, the creep test results of sub-base specimens reveal the occurrence of large instantaneous elastic strain, differently from the strain curve observed in ordinary concrete, as well as the occurrence of small creep strain leading to low creep coefficient.


2016 ◽  
Vol 87 (3) ◽  
pp. 285-295 ◽  
Author(s):  
Masayuki Takatera ◽  
Ken Ishizawa ◽  
KyoungOk Kim

The effect of adhesive interlining on the creep behavior of a woven fabric in the bias direction was investigated. Three-element viscoelastic models were used to approximate the creep behavior of a face fabric and adhesive interlining. The creep model of a laminated fabric comprised a six-element model in which two three-element models are connected in parallel with the three-element model. Creep tests were carried out using face fabrics, adhesive interlinings, and their laminated fabrics without and with bonding adhesive interlining by hanging samples in the 45° bias direction under their own weight for 7 days. Creep strains of face fabrics bonded with adhesive interlining were found to be weaker than those of the face fabrics. The creep behavior for the face and interlining fabrics could be approximated using the three-element viscoelastic model with appropriate parameters. The experimental creep behavior of a laminated fabric without bonding was similar to the theoretical behavior. However, the experimental creep of laminated fabrics with bonding interlining was less than the calculated creep, owing to the increase in stiffness due to the adhesive. By revising the six-element model with the strains just after hanging and for 2 days, it was possible to predict the creep strain over 7 days.


2017 ◽  
Vol 37 (2) ◽  
pp. 185-196 ◽  
Author(s):  
Hamid Reza Salehi ◽  
Manouchehr Salehi

Abstract In this work, the effects of nano titania are investigated on mechanical, creep, and viscoelastic behaviors of epoxy resin. For this purpose, 0.25, 0.5, and 1 vol.% of TiO2 nanoparticles were mixed with thermoset epoxy resin by mechanical and ultrasonic homogenizers and then the tensile, creep, and DMTA test samples were fabricated. The results of tensile tests show that the addition of TiO2 nanopowder slightly increased the strength and Young’s modulus of epoxy resin. However, the ultimate tensile strain or the rupture strain of nanocomposites is decreased. In addition, to understand the viscoelastic behavior of nanocomposites, the DMTA and tensile creep tests have been done. Tensile creep test has been done by DMTA and universal test machine. Both results confirmed that the creep resistance of nanocomposites has extensively improved by adding the titania nanoparticles. Variations of storage modulus, loss modulus, and tan (δ) by adding TiO2 nanopowder were examined in two modes of bending and tension. Storage and loss moduli of nanocomposite are considerably increased in all the states, but the storage modulus was more sensitive to TiO2 loading intensity. Thus, test results showed that introduction of TiO2 in the epoxy resin leads to the improvement of mechanical, creep resistance, and viscoelastic properties of nanocomposites. Due to the wide applications of epoxy resins in engineering devices, this method of reinforcement can be practical and useful to overcome some limitations of epoxy resins.


2004 ◽  
Vol 842 ◽  
Author(s):  
Juraj Lapin ◽  
Mohamed Nazmy ◽  
Marc Staubli

ABSTRACTThe effect of long-term aging and creep exposure on the microstructure of a cast TiAl-based alloy with nominal chemical composition Ti-46Al-2W-0.5Si (at.%) was studied. The aging experiments were performed at temperatures between 973 and 1073 K for various times ranging from 10 to 14000 h in air. Constant load tensile creep tests were performed at applied stresses ranging from 150 to 400 MPa and at temperatures between 973 and 1123 K up to 25677 h. During aging and creep testing the α2(Ti3Al)-phase in the lamellar and feathery regions transforms to the γ(TiAl)-phase and fine needle-like B2 precipitates. Microstructural instabilities lead to a softening of the alloy. The effect of this softening on long-term creep resistance is negligible at temperatures of 973 and 1023 K.


2013 ◽  
Vol 639-640 ◽  
pp. 354-358 ◽  
Author(s):  
Hui Li ◽  
Ying She Luo ◽  
Jian Jun Xie ◽  
Sheng Ming Chen

The rheological mechanical properties of two kinds of self-designed epoxy adhesive curing systems were studied in this paper through the dynamic and static thermodynamics instrument named EPLEXOR 500N made by GABO® company in Germany. Short-term creep tests were carried out under three different temperature conditions of 20°C, 30°C and 40°C and the rheological model is developed to describe the materials creep law. In addition, the test results from the two different epoxy adhesive are also compared and analyzed.


Sign in / Sign up

Export Citation Format

Share Document