scholarly journals Numerical analysis of the effect of embedment depth on the geometry of the cone failure

2021 ◽  
Vol 2130 (1) ◽  
pp. 012012
Author(s):  
J Jonak ◽  
R Karpiński ◽  
A Wójcik

Abstract This paper presents the results of a numerical FEM analysis of the effect of embedment depth on the extent of the failure zone (cone failure) under the effect of an undercut anchor. For the establishment of the other affecting quantities, the formation of the value of the cone failure angle of the rock medium depending on the embedment depth was analysed. The problem is interesting as regards aspects of rock mass loosening during pull-out of undercut anchors. As a result of the analysis, a significant effect of embedment depth on propagation and the extent of cone failure has been found. The increasing value of embedment depth significantly decreases the extent of the failure zone measured on a free rock surface. The increasing value of cone failure angle limits the potential interaction of failure zones in multi-anchor systems.

2021 ◽  
Vol 2130 (1) ◽  
pp. 012011
Author(s):  
J Jonak ◽  
R Karpiński ◽  
A Wójcik

Abstract The paper presents the results of a numerical analysis using the Finite Element Method (FEM) of the friction issue in the contact between the undercut anchor head and rock during anchor pull-out. Formation of failure zone of rock medium was analysed assuming different Coulomb friction coefficients in the contact zone of conical anchor head with a rock. The problem is interesting as regards practical aspects of rock mass loosening during anchor pull-out. The analysis revealed a significant effect of the friction coefficient on the propagation and extent of the failure zone. Increasing the friction factor significantly decreases the extent of the failure zone measured on a free rock surface.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2371
Author(s):  
Józef Jonak ◽  
Robert Karpiński ◽  
Andrzej Wójcik

The paper presents the results of a numerical analysis (FEM) describing the effect of the undercutting head angle on the formation of the rock mass failure zone during the initial stages of failure propagation. The research was carried out in the context of developing a technology for rock extraction by controlled pull-out of undercut anchors installed in the rock mass. The focus was on the initial stage of crack propagation and its trajectory for anchors embedded at an assumed constant depth and a value of the friction coefficient of the rock against the anchor head. It is shown that smaller angles favor smaller stripping angles and an increased radial impact of the head on the rock material (in the plane perpendicular to the head axis), while the impact of heads with larger angles is found to favor larger fracture penetration angles and faster penetration towards the free rock surface.


2020 ◽  
Vol 16 (2) ◽  
pp. 308-319
Author(s):  
Haidar H. Haidar ◽  
Faten I. Mussa ◽  
Abbas O. Dawood ◽  
Ahmed A. Ghazi ◽  
Rassel A. Gabbar

AbstractThis study investigated the effectiveness of several types of adhesives used in post-installed rebar connections as a bonding agent between steel reinforcement bars and old concrete under pull out test. The experimental samples were; cylindrical samples of (150 mm dia. × 300 mm high) with anchors rebar of varying diameter (12 and 16 mm), different embedded length (100 and 150) mm with different holes’ diameters. The strategy of control were cast-in-place rebar concrete specimens while other samples are post-installed rebar concrete specimens of varied chemical adhesives as bonding agents, namely KUT EPOXY ANCHOR ‘NS’ and SIKAFLOOR169. The output showed that the different adhesives yielded closed pull-out load values. It is found that the pull-out capacity (bond strength) is increased by increasing the embedded length, the diameter of the rebar and slightly with the diameter of the hole. In addition, the failure mode of post-installed rebar concrete was governed by the embedded length and the area of contact with the adhesives. On the other hand, the larger diameter of rebar favors splitting or failure of concrete due to higher strength in binder-rebar interface compare to the binder-concrete interface. The results showed that the pull-out load was increased by (26 % and 32 %) as the rebar diameter increased from 12 mm to 16 mm for KUT “NS” and SIKAFLOOR respectively. The hole diameter had slightly effect of the pull out load where the average of increment was only 6 %. Finally, the bonding strength is considerably depended on the embedded length and less affected by the type of epoxy.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4657
Author(s):  
Józef Jonak ◽  
Robert Karpiński ◽  
Michał Siegmund ◽  
Andrzej Wójcik ◽  
Kamil Jonak

This study employs the numerical analysis and experimental testing to analyze the fracturing mechanics and the size of rock cones formed in the pull-out of a system of three undercut anchors. The research sets out to broaden the knowledge regarding: (a) the potential of the undercut anchor pull-out process in mining of the rock mass, and (b) estimating the load-carrying capacity of anchors embedded in the rock mass (which is distinctly different from the anchorage to concrete). Undercut anchors are most commonly applied as fasteners of steel components in concrete structures. The new application for undercut anchors postulated in this paper is their use in rock mining in exceptional conditions, such as during mining rescue operations, which for safety considerations may exclude mechanical mining techniques, mining machines, or explosives. The remaining solution is manual rock fracture, whose effectiveness is hard to assess. The key issue in the analyzed aspect is the rock fracture mechanics, which requires in-depth consideration that could provide the assistance in predicting the breakout prism dimensions and the load-displacement behavior of specific anchorage systems, embedment depth, and rock strength parameters. The volume of rock breakout prisms is an interesting factor to study as it is critical to energy consumption and, ultimately, the efficiency of the process. Our investigations are supported by the FEM (Finite Element Method) analysis, and the developed models have been validated by the results from experimental testing performed in a sandstone mine. The findings presented here illuminate the discrepancies between the current technology, test results, and standards that favor anchorage to concrete, particularly in the light of a distinct lack of scientific and industry documentation describing the anchorage systems’ interaction with rock materials, which exhibit high heterogeneity of the internal structure or bedding. The Concrete Capacity Design (CCD) method approximates that the maximum projected radius of the breakout cone on the free surface of concrete corresponds to the length of at the most three embedment depths (hef). In rock, the dimensions of the breakout prism are found to exceed the CCD recommendations by 20–33%. The numerical computations have demonstrated that, for the nominal breakout prism angle of approx. 35% (CCD), the critical spacing for which the anchor group effect occurs is ~4.5 (a cross-section through two anchor axes). On average, the observed spacing values were in the range of 3.6–4.0.


2021 ◽  
Vol 11 (12) ◽  
pp. 5461
Author(s):  
Elmedin Mešić ◽  
Enis Muratović ◽  
Lejla Redžepagić-Vražalica ◽  
Nedim Pervan ◽  
Adis J. Muminović ◽  
...  

The main objective of this research is to establish a connection between orthodontic mini-implant design, pull-out force and primary stability by comparing two commercial mini-implants or temporary anchorage devices, Tomas®-pin and Perfect Anchor. Mini-implant geometric analysis and quantification of bone characteristics are performed, whereupon experimental in vitro pull-out test is conducted. With the use of the CATIA (Computer Aided Three-dimensional Interactive Application) CAD (Computer Aided Design)/CAM (Computer Aided Manufacturing)/CAE (Computer Aided Engineering) system, 3D (Three-dimensional) geometric models of mini-implants and bone segments are created. Afterwards, those same models are imported into Abaqus software, where finite element models are generated with a special focus on material properties, boundary conditions and interactions. FEM (Finite Element Method) analysis is used to simulate the pull-out test. Then, the results of the structural analysis are compared with the experimental results. The FEM analysis results contain information about maximum stresses on implant–bone system caused due to the pull-out force. It is determined that the core diameter of a screw thread and conicity are the main factors of the mini-implant design that have a direct impact on primary stability. Additionally, stresses generated on the Tomas®-pin model are lower than stresses on Perfect Anchor, even though Tomas®-pin endures greater pull-out forces, the implant system with implemented Tomas®-pin still represents a more stressed system due to the uniform distribution of stresses with bigger values.


2012 ◽  
Vol 517 ◽  
pp. 932-938 ◽  
Author(s):  
Zhi Fang ◽  
Hong Qiao Zhang

There exist the problems such as low bond strength and bad durability in the ordinary grouting slurry of the ground anchor system at present. The high-performance grouting mediums RPC (Reactive Powder Concrete) and DSP (Densified Systems containing homogeneously arranged ultrafine Particles) would become the potential replacement of grouting medium in ground anchor resulting from their high compressive strength, durability and toughness. Based on a series of pull-out tests on ground anchors with different high-performance grouting medium of RPC and DSP , different bond length in the construction field, the bond performance on the interfaces between anchor bolt (deformed steel bar) and grouted medium as well as between grouted medium and rock mass was studied. The results indicate that the interfacial bond strength between RPC or DSP and deformed steel bolt ranges within 23-31Mpa, far greater than that (about 2-3MPa) between the ordinary cementitious grout and deformed steel bar. Even though the interfacial bond strength between the grouted medium and rock mass of limestone was not obtained in the test since the failure mode was pull-out of those steel bar rather than the interface shear failure between grouted medium and rock mass, the bond stress on the interface reached 6.2-8.38 MPa, also far greater than the bond strength (about 0.1-3MPa) between the ordinary cementitious slurry and rocks.


2014 ◽  
Vol 716-717 ◽  
pp. 363-369
Author(s):  
Zhen Hua Xie ◽  
Dong Yang ◽  
Sha Sha Liang ◽  
Zhi Yun Jia

The technology of hierarchical multiple high-pressure grouting is an effective approach to manage high and steep slope of broken rock mass. The number of grouting is one of the key parameters of this technology. By the analysis of mechanics and grouting theory, the anchoring effect mainly is affected by anchor slurry vein and the contact area with rock mass. Based on the system analysis of slurry vein development for first time and many times high-pressure grouting, the process flow for hierarchical multiple high-pressure grouting is put forward. Serve the rock permeability changes before and after grouting as an indicator measuring slurry and rock surface area, the method of determining grouting number based on the reliable probability is got. Combined with the engineering example of Shouyun Iron Mine, this paper puts forward the reliability criteria of working state of hierarchical multiple high-pressure grouting. Through the probability calculation, the best number of grouting is 4 times. The tests of permeability of rock mass and drawing force verify the accuracy of this determination method.


1986 ◽  
Vol 59 (2) ◽  
pp. 751-760
Author(s):  
Todd McLin Davis

A problem often not detected in the interpretation of survey research is the potential interaction between subgroups within the sample and aspects of the survey. Potentially interesting interactions are commonly obscured when data are analyzed using descriptive and univariate statistical procedures. This paper suggests the use of cluster analysis as a tool for interpretation of data, particularly when such data take the form of coded categories. An example of the analysis of two data sets with known properties, one random and the other contrived, is presented to illustrate the application of cluster procedures to survey research data.


1906 ◽  
Vol 3 (3) ◽  
pp. 118-120
Author(s):  
Cosmo Johns

That silica appears as a constituent mineral of igneous rocks in two distinct phases, viz. quartz and tridymite, has been known for some time. The writer is not aware that any explanation has been offered which would indicate the conditions determining the appearance of one or the other in a cooling fused rock-mass. He now proposes to describe certain experiments made with a view to explain why it is that though the free silica generally appears as quartz, yet occasionally, as in certain trachytes, it crystallizes out as tridymite.


Sign in / Sign up

Export Citation Format

Share Document