scholarly journals Processing of quasi-equidistant surfaces with the detection of the dependence of the roughness parameters on the tool pitch in the cam system

2021 ◽  
Vol 2131 (5) ◽  
pp. 052011
Author(s):  
N Tatarnikov ◽  
A Patrin ◽  
A Asaev ◽  
K Sokolovskiy

Abstract This article discusses the basic principles of generating a tool path when processing quasi-equidistant surfaces. The review and analysis of the origin of the automation of technological preparation of production in the world is carried out. The concept of integrated automated production is revealed. Considered are the leading enterprises that were among the first to introduce computer-aided design systems. The article discusses technologies for processing complex surfaces with the maximum removal of the metal layer from the work piece, with the maximum approximation to the given shape. The types of complex spherical surfaces have been identified, the processing of which is a complex technological process that requires a high level of qualifications of a specialist and expensive equipment. Before the introduction of automated machine control, such types of complex surfaces were almost impossible to process, the geometry was only close to the real one. Here we consider a modern CAM-system, which is a complex software package. Over the past decade, several generations of CAM systems have changed. When forming the tool path, it is possible to use the functions of their viewing and editing. In most cases, the system automatically generates the tool path based on the cutting geometry and machining parameters. The authors proposed a method for creating a machining path in the NX CAM environment. In this work, the optimal trajectory of the tool movement is determined, the cutting pattern is selected for processing quasi-equidistant surfaces, the cutting modes, the cutting tool, and the overlap step between passes are determined.

2018 ◽  
Vol Vol.18 (No.1) ◽  
pp. 96-107 ◽  
Author(s):  
Lam NGUYEN ◽  
Johannes BUHL ◽  
Markus BAMBACH

Three-axis machines are limited in the production of geometrical features in powder-bed additive manufacturing processes. In case of overhangs, support material has to be added due to the nature of the process, which causes some disadvantages. Robot-based wire-arc additive manufacturing (WAAM) is able to fabricate overhangs without adding support material. Hence, build time, waste of material, and post-processing might be reduced considerably. In order to make full use of multi-axis advantages, slicing strategies are needed. To this end, the CAD (computer-aided design) model of the part to be built is first partitioned into sub-parts, and for each sub-part, an individual build direction is identified. Path planning for these sub-parts by slicing then enables to produce the parts. This study presents a heuristic method to deal with the decomposition of CAD models and build direction identification for sub-entities. The geometric data of two adjacent slices are analyzed to construct centroidal axes. These centroidal axes are used to navigate the slicing and building processes. A case study and experiments are presented to exemplify the algorithm.


2013 ◽  
Vol 282 ◽  
pp. 235-241 ◽  
Author(s):  
Ján Semjon ◽  
Peter Demeč ◽  
Jozef Svetlík

This article focuses on issue of proposal ideal tool paths for machine tools. Model of machine consists from 6 basic knots where milling machine disposes spindle placed in the horizontal direction are. Based on mathematical analysis we can detect the movement of machine axes for uncertainty investigated. The calculated values can be compared with machine model developed in Computer - Aided Design. Defining the shape of workpiece as well as assigning an appropriate instrument can be determined by true value of precision workpiece. After substituting the values of specific dimensions we get the final position of vectors point for contact in tool coordinate systems at individual model solids.


Author(s):  
Thomas R. Langerak ◽  
Joris S. M. Vergeest

Modeling with free form features has become the standard in Computer-Aided Design (CAD). With the increasing complexity of free form CAD models, features offer a high-level approach to modeling shapes. However, in most commercial modeling packages, only a static set of free form features is available. Researchers have tried to solve this problem by coming up with methods for user-driven free form feature definition, but failed to connect their methods to a means to instantiate these user-driven free form features on a target surface. Reversely, researchers have proposed tools for modeling with free form features, but these methods are time-intensive in that they are as of yet unsuitable for pre-defined features. This paper presents a new method for user-driven feature definition, as well as a method to instantiate these user-defined features on a target surface. We propose the concept of a dual environment, in which the definition of a feature is maintained simultaneously with its instance on a target surface, allowing the user to modify the definition of an already instantiated feature. This dual environment enables dynamic feature modeling, in which the user is able to change the definition of instantiated features on-the-fly. Furthermore, the proposed instantiation method is independent from the type of shape representation of the target surface and thereby increases the applicability of the method. The paper includes an extensive application example and discusses the results and shortcomings of the proposed methods.


Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 30 ◽  
Author(s):  
Jang Hyun Kim ◽  
Hyun Woo Kim ◽  
Garam Kim ◽  
Sangwan Kim ◽  
Byung-Gook Park

In this paper, a novel tunnel field-effect transistor (TFET) has been demonstrated. The proposed TFET features a SiGe channel, a fin structure and an elevated drain to improve its electrical performance. As a result, it shows high-level ON-state current (ION) and low-level OFF-state current (IOFF); ambipolar current (IAMB). In detail, its ION is enhanced by 24 times more than that of Si control group and by 6 times more than of SiGe control group. The IAMB can be reduced by up to 900 times compared with the SiGe control group. In addition, technology computer-aided design (TCAD) simulation is performed to optimize electrical performance. Then, the benchmarking of ON/OFF current is also discussed with other research group’s results.


Author(s):  
Thomas R. Langerak ◽  
Joris S. M. Vergeest

Modeling with freeform features has become the standard in computer-aided design. Features offer a high-level approach to modeling shapes. However, in most commercial modeling packages, only a static set of freeform features is available. A new method for user-driven feature definition is presented, as well as a method to instantiate these user-defined features on a target surface. We propose the concept of a dual environment, in which the definition of a feature is maintained parallel to its instance on a target surface. This dual environment enables dynamic feature modeling, in which the user is able to change the definition of instantiated features on-the-fly.


Author(s):  
Hasti Eiliat ◽  
Jill Urbanic

Additive Manufacturing (AM) is the process of joining materials ‘layer by layer’ to make products from Computer Aided Design (CAD) model data. AM processes support faster product realization for a wide selection in industries. The Material Extrusion (ME) process is an AM process that builds a product from thin layers of extruded filaments from a semi-melted material such as a thermoplastic. In commercial systems, the software automatically generates the tool paths for both the model and any necessary supports, based on the curve geometry and the specified build parameters. The interior fill rotates 90° between each layer. Automatically generating the tool path can be the biggest weakness for this process planning strategy. Voids and discontinuities have been observed after evaluating test specimens developed to explore mechanical characteristics. Choosing an optimal raster orientation and bead width will help minimize voids and discontinuities in each layer. A mathematical model is introduced in this paper to find optimal raster orientation and bead widths based on the geometry of the slice for selected 2D extruded parts. As well, preliminary quality assessment metrics are introduced. Void analysis is performed to evaluate solution approaches, and the results compared. The future work will investigate utilizing multiple bead widths for a layer to minimize voids, and developing more comprehensive quality metrics to highlight problematic regions.


1995 ◽  
Vol 117 (1) ◽  
pp. 2-9 ◽  
Author(s):  
R. Gadh ◽  
F. B. Prinz

The current paper discusses a fundamentally new approach to defining and finding interactions in computer-aided design (CAD) forms or features. Feature classes are defined using a high-level abstract entity called a loop. Loops define features in a general manner and aid in the definition of feature boundaries as well. Interactions between features exist due to interactions between their boundaries. Several types of interactions are defined and automatically determined from the boundary representation solid model of the part subsequent to performing feature extraction.


Author(s):  
Juan A. Rami´rez ◽  
Rafael E. Va´squez ◽  
Luis B. Gutie´rrez ◽  
Diego A. Flo´rez

This paper presents the mechanical/naval design process of an underwater remotely operated vehicle (ROV), required to obtain reliable visual information, used for surveillance and maintenance of ship shells and underwater structures of Colombian port facilities. The design was divided into four main subsystems: mechanical/naval, hardware, software and guidance, navigation and control. The most relevant design constraints were evaluated considering environmental conditions, dimensional restrictions, hydrostatics, hydrodynamics, degrees of freedom and the availability of instrumentation and control hardware. The mechanical/naval design was performed through an iterative process by using computational tools, including Computer Aided Design CAD, Computer Aided Engineering CAE, Computational Fluid Dynamics CFD and a high level programming environment. The obtained design ensures that the reliable operation of the robot will be achieved by using a consistent construction process. The new ROV constitutes an innovative product in Colombia, and it will be used for surveillance and oceanographic research tasks.


2006 ◽  
Vol 129 (2) ◽  
pp. 400-406 ◽  
Author(s):  
R. Molina-Carmona ◽  
A. Jimeno ◽  
R. Rizo-Aldeguer

Background. Tool path generation problem is one of the most complexes in computer aided manufacturing. Although some efficient algorithms have been developed to solve it, their technological dependency makes them efficient in only a limited number of cases. Method of Approach. Our aim is to propose a model that will set apart the geometrical issues involved in the manufacturing process from the purely technology-dependent physical issues by means of a topological system. This system applies methods and concepts used in mathematical morphology paradigms. Thus, we will obtain a geometrical abstraction which will not only provide solutions to typically complex problems but also the possibility of applying these solutions to any machining environment regardless of the technology. Presented in the paper is a method for offsetting any kind of curve. Specifically, we use parametric cubic curves, which is one of the most general and popular models in computer aided design (CAD)/computer aided manufacturing (CAM) applications. Results. The resulting method avoids any constraint in object or tool shape and obtains valid and optimal trajectories, with a low temporal cost of O(n∙m), which is corroborated by the experiments. It also avoids some precision errors that are present in the most popular commercial CAD/CAM libraries. Conclusions. The use of morphology as the base of the formulation avoids self-intersections and discontinuities and allows the system to machine free-form shapes using any tool without constraints. Most numerical and geometrical problems are also avoided. Obtaining a practical algorithm from the theoretical formulation is straightforward. The resulting procedure is simple and efficient.


Sign in / Sign up

Export Citation Format

Share Document