scholarly journals Enhancing performance in a LOS MIMO communication using a passive repeater

2021 ◽  
Vol 2140 (1) ◽  
pp. 012013
Author(s):  
Mahmoud Eissa ◽  
D Sukhanov

Abstract This paper presents a technique for obtaining a well-conditioned channel matrix in a line of sight multiple input multiple output (MIMO) environment. The technique is based on the implementation of a back-to-back antenna system as a passive repeater to enhance performance in MIMO systems. The flexible configuration with no need for a phase controller allows to spread the proposed repeater in MIMO communications to ensure spatial multiplexing and enhance capacity. A condition number and matrix rank are proposed as metrics to demonstrate the validity of the proposed method.

Author(s):  
Mohan Reddy

The transmission of several signals and reception of those signals, it requires the implementation of multiple transmitters at the transmitter side and the multiple receivers at the receiver side. This type of system is called multiple input multiple output (M.I.M.O) system. The M.I.M.O systems will result in obtaining the better use of the available spectrum for transmissions of the different signals in the same spectrum and this makes the M.I.M.O systems most dependable for the wireless communications. But the presence of several signals in the same bandwidth of spatial multiplexing matrix in M.I.M.O systems makes it difficult for the signal to get detected at the receiver end. There are plenty of techniques introduced to avoid the difficulty in sensing the signal at receiver in M.I.M.O systems. In this paper we will be discussing about the signal detection technique called minimum mean square error technique (MMSE) which uses the inversion of the matrix to retrieve the signal and the iteration-based method that is an improvised technique than MMSE technique where the matrix inversion step is avoided and provides better results. The results are obtained by plotting the bit error rate versus the signal to nose ratio using MATLAB


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Pedro Cervantes-Lozano ◽  
Luis F. González-Pérez ◽  
Andrés D. García-García

This paper presents a VLSI architecture for the suboptimal hard-output Vertical-Bell Laboratories Layered Space-Time (V-BLAST) algorithm in the context of Spatial Multiplexing Multiple-Input Multiple-Output (SM-MIMO) systems immersed in Rayleigh fading channels. The design and implementation of its corresponding data-path and control-path components over FPGA devices are considered. Results on synthesis, bit error rate performance, and data throughput are reported.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1667
Author(s):  
David Borges ◽  
Paulo Montezuma ◽  
Rui Dinis ◽  
Marko Beko

Telecommunications have grown to be a pillar to a functional society and the urge for reliable and high throughput systems has become the main objective of researchers and engineers. State-of-the-art work considers massive Multiple-Input Multiple-Output (massive MIMO) as the key technology for 5G and beyond. Large spatial multiplexing and diversity gains are some of the major benefits together with an improved energy efficiency. Current works mostly assume the application of well-established techniques in a massive MIMO scenario, although there are still open challenges regarding hardware and computational complexities and energy efficiency. Fully digital, analog, and hybrid structures are analyzed and a multi-layer massive MIMO transmission technique is detailed. The purpose of this article is to describe the most acknowledged transmission techniques for massive MIMO systems and to analyze some of the most promising ones and identify existing problems and limitations.


Author(s):  
В.Б. КРЕЙНДЕЛИН ◽  
М.В. ГОЛУБЕВ

Совместный с прекодингом автовыбор антенн на приемной и передающей стороне - одно из перспективных направлений исследований для реализации технологий Multiple Transmission and Reception Points (Multi-TRP, множество точек передачи и приема) в системах со многими передающими и приемными антеннами Massive MIMO (Multiple-Input-Multiple-Output), которые активно развиваются в стандарте 5G. Проанализированы законодательные ограничения, влияющие на применимость технологий Massive MIMO, и специфика реализации разрабатываемого алгоритма в миллиметровомдиапа -зоне длин волн. Рассмотрены алгоритмы формирования матриц автовыбора антенн как на передающей, так и на приемной стороне. Сформулирована строгая математическая постановка задачи для двух критериев работы алгоритма: максимизация взаимной информации и минимизация среднеквадратичной ошибки. Joint precoding and antenna selection both on transmitter and receiver sides is one of the promising research areas for evolving toward the Multiple Transmission and Reception Points (Multi-TRP) concept in Massive MIMO systems. This technology is under active development in the coming 5G 3GPP releases. We analyze legal restrictions for the implementation of 5G Massive MIMO technologies in Russia and the specifics of the implementation of the developed algorithm in the millimeter wavelength range. Algorithms of antenna auto-selection matrices formation on both transmitting and receiving sides are considered. Two criteria are used for joint antenna selection and precoding: maximizing mutual information and minimizing mean square error.


2019 ◽  
Vol 8 (1) ◽  
pp. 75-81
Author(s):  
N. Al Shalaby ◽  
S. G. El-Sherbiny

In this paper, A multiple input Multiple Output (MIMO) antenna using two Square Dielectric Resonators (SDRs) is introduced. The mutual coupling between the two SDRAs is reduced using two different methods; the first method is based on splitting a spiral slot in the ground plane, then filling the slot with dielectric material, "E.=2.2". The second method is based on inserting a copper parasitic element, having the same shape of the splitted Spiral, between the two SDRAs.  The effect of replacing the copper parasitic element with Carbon nanotubes (CNTs) parasitic element "SOC12 doped long-MWCNT BP" is also studied. The antenna system is designed to operate at 6 GHz. The analysis and simulations are carried out using finite element method (FEM). The defected ground plane method gives a maximum isolation of l8dB at element spacing of 30mm (0.6λo), whereas the parasitic element method gives a maximum isolation of 42.5dB at the same element spacing.


Author(s):  
Hong Son Vu ◽  
Kien Truong ◽  
Minh Thuy Le

<p>Massive multiple-input multiple-output (MIMO) systems are considered a promising solution to minimize multiuser interference (MUI) based on simple precoding techniques with a massive antenna array at a base station (BS). This paper presents a novel approach of beam division multiple access (BDMA) which BS transmit signals to multiusers at the same time via different beams based on hybrid beamforming and user-beam schedule. With the selection of users whose steering vectors are orthogonal to each other, interference between users is significantly improved. While, the efficiency spectrum of proposed scheme reaches to the performance of fully digital solutions, the multiuser interference is considerably reduced.</p>


Author(s):  
Elsadig Saeid ◽  
Varun Jeoti ◽  
Brahim Belhaouari Samir

Future Wireless Networks are expected to adopt multi-user multiple input multiple output (MU-MIMO) systems whose performance is maximized by making use of precoding at the transmitter. This chapter describes the recent advances in precoding design for MU-MIMO and introduces a new technique to improve the precoder performance. Without claiming to be comprehensive, the chapter gives deep introduction on basic MIMO techniques covering the basics of single user multiple input multiple output (SU-MIMO) links, its capacity, various transmission strategies, SU-MIMO link precoding, and MIMO receiver structures. After the introduction, MU-MIMO system model is defined and maximum achievable rate regions for both MU-MIMO broadcast and MU-MIMO multiple access channels are explained. It is followed by critical literature review on linear precoding design for MU-MIMO broadcast channel. This paves the way for introducing an improved technique of precoding design that is followed by its performance evaluation.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1321
Author(s):  
Amjad Iqbal ◽  
Ahsan Altaf ◽  
Mujeeb Abdullah ◽  
Mohammad Alibakhshikenari ◽  
Ernesto Limiti ◽  
...  

This paper presents an isolation enhancement of two closely packed multiple-input multiple-output (MIMO) antenna system using a modified U-shaped resonator. The modified U-shaped resonator is placed between two closely packed radiating elements resonating at 5.4 GHz with an edge to edge separation distance of 5.82 mm (λ∘/10). Through careful adjustment of parametric modelling, the isolation level of −23 dB among the densely packed elements is achieved. The coupling behaviour of the MIMO elements is analysed by accurately designing the equivalent circuit model in each step. The antenna performance is realized in the presence and absence of decoupling structure, and the results shows negligible effects on the antenna performance apart from mutual coupling. The simple assembly of the proposed modified U-shaped isolating structure makes it useful for several linked applications. The proposed decoupling structure is compact in nature, suppress the undesirable coupling generated by surface wave and nearby fields, and is easy to fabricate.


Sign in / Sign up

Export Citation Format

Share Document