scholarly journals Photoinduced superhydrophilicity of amorphous TiOx-like thin films by a simple room temperature sol-gel deposition and atmospheric plasma jet treatment

2014 ◽  
Vol 550 ◽  
pp. 012034 ◽  
Author(s):  
V E Vrakatseli ◽  
E Pagonis ◽  
E Amanatides ◽  
D Mataras
2012 ◽  
Vol 501 ◽  
pp. 236-241 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah ◽  
Ramadan E. Shaiboub

Thin films nanoparticles TbxY3-xFe5O12 (x=0.0, 1.0, 2.0) were prepared by the sol-gel process followed by annealing process at various annealing temperatures of 700° C, 800° C and 900° C in air for 2 h. The results obtained from X-ray diffractometer (XRD) show that the films annealed below 900°C exhibit peaks of garnet mixed with small amounts of YFeO3 and Fe2O3. Pure garnet phase has been detected in the films annealed at 900°C. Before annealing the films show amorphous structures. The particles sizes measurement using the field emission scanning electron microscope (FE-SEM) showed that the particles sizes increased as the annealing temperature increased. The magnetic properties were measured at room temperature using the vibrating sample magnetometer (VSM). The saturation magnetization (Ms) of the films also increased with the annealing temperature. However, different behavior of coercivity (Hc) has been observed as the annealing temperature was increased.


1999 ◽  
Vol 606 ◽  
Author(s):  
S. Bhaskar ◽  
S. B. Majumder ◽  
P. S. Dobal ◽  
R. S. Katiyar ◽  
A. L. M. Cruz ◽  
...  

AbstractIn the present work we have optimized the process parameters to yield homogeneous, smooth ruthenium oxide (RuO2) thin films on silicon substrates by a solution deposition technique using RuCl3.×.H2O as the precursor material. Films were annealed in a temperature range of 300°C to 700°C, and it was found that RuO2 crystallizes at a temperature as low as 400°C. The crystallinity of the films improves with increased annealing temperature and the resistivity decreases from 4.86µΩ-m (films annealed at 400°C) to 2.94pµΩ (films annealed at 700°C). Ageing of the precursor solution has a pronounced effect on the measured resistivities of RuO2 thin films. It was found that the measured room temperature resistivities increases from 2.94µΩ-m to 45.7µΩ-m when the precursor sol is aged for aged 60 days. AFM analysis on the aged films shows that the grain size and the surface roughness of the annealed films increase with the ageing of the precursor solution. From XPS analysis we have detected the presence of non-transformed RuCl3 in case of films prepared from aged solution. We propose, that solution ageing inhibits the transformation of RuCl3 to RuO2 during the annealing of the films. The deterioration of the conductivity with solution ageing is thought to be related with the chloride contamination in the annealed films.


2008 ◽  
Vol 254 (22) ◽  
pp. 7459-7463 ◽  
Author(s):  
Yuhua Xiao ◽  
Shihui Ge ◽  
Li Xi ◽  
Yalu Zuo ◽  
Xueyun Zhou ◽  
...  

2004 ◽  
Vol 811 ◽  
Author(s):  
M. Jain ◽  
Yu.I. Yuzyuk ◽  
R.S. Katiyar ◽  
Y. Somiya ◽  
A.S. Bhalla ◽  
...  

ABSTRACTWe have investigated electrical and optical properties of the lead strontium titanate {(PbxSr1-x)TiO3 or PST} ceramic and dielectric properties of the thin films of PST at low and high frequencies. (PbxSr1-x)TiO3 compositions with × ≤ 0.4 are paraelectric at room temperature and exhibit ferroelectric phase transition below room temperature. Only one phase transition in the PST system (compared to three in BaxSr1-xTiO3) was recorded. The studies indicated that PST has potential for tunable microwave devices in the paraelectric phase. In the present studies, Pb0.3Sr0.7TiO3 (PST30) ceramic was prepared by the conventional solid-state reaction method and thin films of PST were prepared by sol-gel technique. Structural, microstructural, dielectric, and Raman measurements were performed on these samples. Sharp phase transition was observed in case of the ceramic by dielectric and Raman measurements at 283 K. Raman measurements revealed well-pronounced soft-mode behavior below the Curie temperature in PST ceramic. The thin film of PST deposited on lanthanum aluminate substrate was highly (100) oriented and showed dielectric maxima at ∼280 K, which was close to that in case of the bulk. Eight element coupled micro-strip phase shifters (CMPS) was fabricated on the PST film and tested in the frequency range of 15-17 GHz. The average figure of merit of 49 °/dB for PST30 film in the Ku band at 533 kV/cm suggests the potentiality of these films for high frequency tunable dielectric devices.


2000 ◽  
Vol 623 ◽  
Author(s):  
D.P. Eakin ◽  
M.G. Norton ◽  
D.F. Bahr

AbstractThin films of PZT were deposited onto platinized and bare single crystal NaCl using spin coating and sol-gel precursors. These films were then analyzed using in situ heating in a transmission electron microscope. The results of in situ heating are compared with those of an ex situ heat treatment in a standard furnace, mimicking the heat treatment given to entire wafers of these materials for use in MEMS and ferroelectric applications. Films are shown to transform from amorphous to nanocrystalline over the course of days when held at room temperature. While chemical variations are found between films crystallized in ambient conditions and films crystallized in the vacuum conditions of the microscope, the resulting crystal structures appear to be insensitive to these differences. Significant changes in crystal structure are found at 500°C, primarily the change from largely amorphous to the beginnings of clearly crystalline films. Crystallization does occur over the course of weeks at room temperature in these films. Structural changes are more modest in these films when heated in the TEM then those observed on actual wafers. The presence of Pt significantly influences both the resulting structure and morphology in both in situ and ex situ heated films. Without Pt present, the films appear to form small, 10 nm grains consisting of both cubic and tetragonal phases, whereas in the case of the Pt larger, 100 nm grains of a tetragonal phase are formed.


2000 ◽  
Vol 271 (1-2) ◽  
pp. 162-166 ◽  
Author(s):  
Hirofumi Matsuda ◽  
Nobuyuki Kobayashi ◽  
Takeshi Kobayashi ◽  
Kun’ichi Miyazawa ◽  
Makoto Kuwabara

2009 ◽  
Vol 1199 ◽  
Author(s):  
Danilo G Barrionuevo ◽  
Surinder P Singh ◽  
Maharaj S. Tomar

AbstractWe synthesized BiFe1-xMnxO3 (BFMO) for various compositions by sol gel process and thin films were deposited by spin coating on platinum Pt/Ti/SiO2/Si substrates. X-ray diffraction shows all the diffraction planes corresponding to rhombohedrally distorted perovskite BiFeO3 structure. The absence of any impurity phase in the films suggests the incorporation Mn ion preferentially to Fe site in the structure for low concentration. Magnetic measurements reveal the formation of ferromagnetic phase at room temperature with increased Mn substitution. On the other hand, ferroelectric polarization decreases with increasing Mn ion concentration. Raman studies suggest the dopant induced structural distortion.


2017 ◽  
Vol 268 ◽  
pp. 244-248
Author(s):  
Abu Hassan Haslan ◽  
Imad Hussein Kadhim

High-quality nanocrystalline (NC) SnO2 thin films were grown on SiO2/Si and Al2O3 substrates using sol–gel spin coating method. The structural properties, surface morphologies and gas sensing properties of the NC SnO2 were investigated. XRD measurements showed a tetragonal rutile structure and the diffraction peaks for NC SnO2 thin films grown on Al2O3 substrates outperformed those of NC SnO2 films grown on SiO2/Si substrates. The surface morphology of the annealed SnO2 thin films at 500 °C appeared as polycrystalline with uniform nanoparticle distribution. Hydrogen (H2) gas sensing performance of the NC SnO2 was examined for H2 concentrations ranging from 150 ppm to 1000 ppm at different temperatures (room temperature, 75 and 125 °C) for over 50 min. The room temperature sensitivities for H2 gas sensors based on NC SnO2 thin films grown on Al2O3 and SiO2/Si substrates was 2570% and 600%, respectively upon exposure to 1000 ppm of H2 gas. While the sensitivity values at 125 °C increased to 9200% and 1950%, respectively.


Sign in / Sign up

Export Citation Format

Share Document