Design a H-bridge low ripple and high bandwidth air core magnet corrector power supply in NSRRC

2021 ◽  
Vol 16 (11) ◽  
pp. T11007
Author(s):  
Y.-S. Wong ◽  
J.-C. Huang ◽  
K.-B. Liu ◽  
C.-Y. Liu ◽  
B.-S. Wang

Abstract This paper is the study of a low-current-ripple and high-bandwidth corrector power supply. The main circuit of this power supply is using a full bridge (H-bridge) structure, and the output current through the high-precision direct current current transducers (DCCT) to transfer the reference voltage to the controller. Previous TPS corrector power supply had a 4.7 kHz current bandwidth, and its output current ripple was 100 μA. Such current ripple and bandwidth do not satisfy the requirements of a rapidly orbiting feedback system of air core loading. Therefore, our research team designed a novel prototype power supply with a high bandwidth (more than 10 kHz) and low output current ripple (less than 10 μA) which was developed via a novel topology circuit. The operation frequency of the main power switch's n-type metal-oxide-semiconductor logic of this novel circuit is increased to 245 kHz. Moreover, the output results of the filter inductor and filter capacitor are modified to 80 μH and 2.46 μF, respectively. The prototype power supply bandwidth reached 10.546 kHz and increase of 124% and its output current ripple was lowered below than 5 μA. The properties of this corrector power supply are very important for the beam correction in storage rings. Finally, A circuit with an input voltage of 48 V, a maximum output current of 10 A, and an output power of 400 W is tested in a laboratory to verify the performance of the developed corrector for the National Synchrotron Radiation Research Center.

2014 ◽  
Vol 960-961 ◽  
pp. 1264-1267
Author(s):  
Zhu Lei Shao

A flyback switching power supply was designed, which can drive LED stability. The switching power supply is the single-ended flyback structure, and based on PWM driver chip L6561. The input voltage range of the switching power supply is 85V to 265V. The output voltage is 15V and the maximum output current is 2A. The switch power supply is suitable for mobile phone, office equipment and LED. According to experiment, the switching power supply can steadily drive 5 LED, the ripple factor of output is 1.33%, the power efficiency is 85.7%.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650064 ◽  
Author(s):  
Hongbo Ma ◽  
Junhong Yi ◽  
Jie Shuai ◽  
Jie Yang

High input voltage, multiple low voltage outputs and high working temperature are the main design challenges for magnetic levitation (maglev) control power supply. The traditional solutions have several problems, such as the uncontrolled duty ratio, the poor cross-regulation capability and low reliability. In order to solve these problems, a quasi-single-stage solution employing the double resonant tank LLC topology is proposed and developed in this paper. The proposed solution can increase significantly the overall conversion efficiency because of the achieved soft-switching over the entire operation range. Moreover, the low input current ripple, high magnetic utilization and high reliability can be achieved. Experimental results of a 210-W laboratory prototype with 220–380[Formula: see text]V input and four outputs are presented to demonstrate the declared features.


2013 ◽  
Vol 753-755 ◽  
pp. 2439-2442
Author(s):  
Jun Li ◽  
Jun Hong Zhang ◽  
Wei Gao

In the power conversion, power supply in parallel to increase capacity and reliability is a commonly used method; and the current ripple have a great impact on the size and weight of the power supply. DC-DC parallel power supply ripple in the buck circuit model based on analysis, Fourier series expansion of the current continuous state of a single DC power inductor current, commence on the series and parallel power simulation study. Analysis and simulation results show that interleaved parallel can effectively inhibit the output current ripple.


2013 ◽  
Vol 284-287 ◽  
pp. 2521-2525
Author(s):  
Hsien Wei Tseng ◽  
Yang Han Lee ◽  
Chao Chung Huang ◽  
Liang Yu Yen ◽  
Yih Guang Jan

In this paper the process of implementing a low dropout regulator (LDO) chip is presented; it is using uses Taiwan Semiconductor TSMC’s Manufacture Inc. 0.35um 2P4M process. The circuit designed with the described process can be is operated at 3-5V input voltage to generate 2.5V output voltage. Maximum output current can be running up to 200mA. This LDO is implemented without placing output capacitors to reduce BOM (Bill of Material) cost and stable between 0~200mA loading current and the chip is stable when the loading current is in the range 0~200mA. [8] The new proposed LDO chip can be implemented in the handheld mobile devices, battery powered equipment, wireless devices, cordless phones, or PC peripherals.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3477
Author(s):  
Chih-Chiang Wu ◽  
Ching-Yao Liu ◽  
Guo-Bin Wang ◽  
Yueh-Tsung Shieh ◽  
Wei-Hua Chieng ◽  
...  

This paper attempts to disclose a new GaN-based device, called the P-Cascode GaN HEMT, which uses only a single gate driver to control both the D-mode GaN and PMOS transistors. The merit of this synchronous buck converter is that it can reduce the circuit complexity of the synchronous buck converter, which is widely used to provide non-isolated power for low-voltage and high-current supply to system chips; therefore, the power conversion efficiency of the converter can be improved. In addition, the high side switch using a single D-mode GaN HEMT, which has no body diode, can prevent the bi-directional flow and thus reduce the power loss and cost compared to a design based on a series of two opposite MOSFETs. The experiment shows that the proposed P-Cascode GaN HEMT efficiency is above 98% when it operates at 500 kHz with 6 W output. With the input voltage at 12 V, the synchronous buck converter provides an adjustable regulated output voltage from 1.2 V to 10 V while delivering a maximum output current of 2 A.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 64
Author(s):  
Chien-Chun Huang ◽  
Yu-Chen Liu ◽  
Chia-Ching Lin ◽  
Chih-Yu Ni ◽  
Huang-Jen Chiu

To balance the cost and volume when applying a low output current ripple, the power supply design should be able to eliminate the current ripple under any duty cycle in medium and high switching frequencies, and considerably reduce filter volume to improve power density. A stacked buck converter was eventually selected after reviewing the existing solutions and discussing their advantages and disadvantages. A stacked buck converter is used as a basis to propose the transient response and output current ripple elimination effect, boundary limit control method, and low output ripple dead time modulation method to make individual improvements. The principle, mathematical derivation, small-signal model, and compensator design method of the improvement method are presented in detail. Moreover, simulation results are used to mutually verify the correctness and effectiveness of the improvement method. A stacked buck converter with 330-V input, 50-V output, and 1-kW output power was implemented to verify the effect of the low output current ripple dead time modulation. Experimental results showed that the peak-to-peak value of the output current ripple was reduced from 2.09 A to 559 mA, and the RMS value was reduced from 551 mA to 91 mA, thereby effectively improving the output current ripple.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7334
Author(s):  
Seongwoog Oh ◽  
Jungsuek Oh

This paper proposes a novel design for a chip-on-probe with the aim of overcoming the heat dissipation effect during brain stimulations using modulated microwave signals. The temperature of the stimulus chip during normal operation is generally 40 °C–60 °C, which is sufficient to cause unintended temperature effects during stimulation. This effect is particularly fatal in brain stimulation applications that require repeated stimulation. This paper proposes, for the first time, a topology that vertically separates the stimulus chip generating the stimulus signal and the probe delivering the signal into the brain to suppress the heat transfer while simultaneously minimizing the radio frequency (RF) transmission loss. As the proposed chip-on-probe should be attached to the head of a small animal, an auxiliary board with a heat sink was carefully designed considering the weight that does not affect the behavior experiment. When the transition structures are properly designed, a heat sink can be mounted to maximize the cooling effect, reducing the temperature by more than 13 °C in a simulation when the heat generated by the chip is transferred to the brain, while the transition from the chip to the probe experiences a loss of 1.2 dB. Finally, the effectiveness of the proposed design is demonstrated by fabricating a chip with the 0.28 μm silicon-on-insulator (SOI) complementary metal–oxide–semiconductor (CMOS) process and a probe with a RT6010 printed-circuit board (PCB), showing a temperature reduction of 49.8 °C with a maximum output power of 11 dBm. In the proposed chip-on-probe device, the temperature formed in the area in contact with the brain is measured at 31.1 °C.


Author(s):  
Jose M. Sosa ◽  
P.R. Martinez-Rodriguez ◽  
G. Escobar ◽  
J.C. Nava-Cruz ◽  
C.A. Limones-Pozos

Sign in / Sign up

Export Citation Format

Share Document