scholarly journals Performance improvement of Compton imaging of astatine-211 by optimising coincidence time windows

2021 ◽  
Vol 16 (12) ◽  
pp. C12031
Author(s):  
Y. Nagao ◽  
M. Yamaguchi ◽  
S. Watanabe ◽  
N.S. Ishioka ◽  
N. Kawachi ◽  
...  

Abstract Astatine-211 is one of the promising radioisotopes for targeted alpha therapy. Optimising treatment strategies as well as determining the suitability of a given agent for a particular patient requires to image the time-dependent distribution of the targeted radiotherapeutic agent both in tumours and in normal tissues. Since the biodistribution of astatine is different from that of iodine, imaging astatine-211 directly is essential. In the previous study of astatine-211 Compton imaging, random coincidence events due to polonium K-shell X-rays were dominant and seemed to cause saturation of counts. Thus optimisation of the coincidence time windows is important to reduce random coincidence events. In this study, we have optimised the coincidence time windows of a Compton camera and improved the sensitivity, noise and spatial resolution of astatine-211 imaging.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Chen-Yu Huang ◽  
Susanna Guatelli ◽  
Bradley M. Oborn ◽  
Barry J. Allen

Targeted alpha therapy (TAT) has the advantage of delivering therapeutic doses to individual cancer cells while reducing the dose to normal tissues. TAT applications relate to hematologic malignancies and now extend to solid tumors. Results from several clinical trials have shown efficacy with limited toxicity. However, the dosimetry for the labeled alpha particle is challenging because of the heterogeneous antigen expression among cancer cells and the nature of short-range, high-LET alpha radiation. This paper demonstrates that it is inappropriate to investigate the therapeutic efficacy of TAT by macrodosimetry. The objective of this work is to review the microdosimetry of TAT as a function of the cell geometry, source-target configuration, cell sensitivity, and biological factors. A detailed knowledge of each of these parameters is required for accurate microdosimetric calculations.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jean-Pierre Pouget ◽  
Julie Constanzo

Targeted alpha therapy (TAT) using alpha particle-emitting radionuclides is in the spotlight after the approval of 223RaCl2 for patients with metastatic castration-resistant prostate cancer and the development of several alpha emitter-based radiopharmaceuticals. It is acknowledged that alpha particles are highly cytotoxic because they produce complex DNA lesions. Hence, the nucleus is considered their critical target, and many studies did not report any effect in other subcellular compartments. Moreover, their physical features, including their range in tissues (<100 μm) and their linear energy transfer (50–230 keV/μm), are well-characterized. Theoretically, TAT is indicated for very small-volume, disseminated tumors (e.g., micrometastases, circulating tumor cells). Moreover, due to their high cytotoxicity, alpha particles should be preferred to beta particles and X-rays to overcome radiation resistance. However, clinical studies showed that TAT might be efficient also in quite large tumors, and biological effects have been observed also away from irradiated cells. These distant effects are called bystander effects when occurring at short distance (<1 mm), and systemic effects when occurring at much longer distance. Systemic effects implicate the immune system. These findings showed that cells can die without receiving any radiation dose, and that a more complex and integrated view of radiobiology is required. This includes the notion that the direct, bystander and systemic responses cannot be dissociated because DNA damage is intimately linked to bystander effects and immune response. Here, we provide a brief overview of the paradigms that need to be revisited.


2015 ◽  
Vol 4 (2) ◽  
pp. 71-76 ◽  
Author(s):  
Jan Kozempel ◽  
Martin Vlk

Author(s):  
Tadashi Watabe ◽  
Makoto Hosono ◽  
Seigo Kinuya ◽  
Takahiro Yamada ◽  
Sachiko Yanagida ◽  
...  

AbstractWe present the guideline for use of [211At] sodium astatide (NaAt) for targeted alpha therapy in clinical trials on the basis of radiation safety issues in Japan. This guideline was prepared by a study supported by the Ministry of Health, Labour, and Welfare, and approved by the Japanese Society of Nuclear Medicine on 8th Feb, 2021. The study showed that patients receiving [211At]NaAt do not need to be admitted to a radiotherapy room and outpatient treatment is possible. The radiation exposure from the patient is within the safety standards of the ICRP and IAEA recommendations for the general public and caregivers. Precautions for patients and their families, safety management associated with the use of [211At]NaAt, education and training, and disposal of medical radioactive contaminants are also included in this guideline. Treatment using [211At]NaAt in Japan should be carried out according to this guideline. Although this guideline is applied in Japan, the issues for radiation protection and evaluation methodology shown here are considered internationally useful as well.


2021 ◽  
Vol 96-97 ◽  
pp. S101
Author(s):  
Victoria Brown ◽  
Cristina Rodríguez-Rodríguez ◽  
Chengcheng Zhang ◽  
Keiran Maskell ◽  
Francois Benard ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3932
Author(s):  
Dannel Yeo ◽  
Laura Castelletti ◽  
Nico van Zandwijk ◽  
John E. J. Rasko

Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited treatment options and poor prognosis. MPM originates from the mesothelial lining of the pleura. Mesothelin (MSLN) is a glycoprotein expressed at low levels in normal tissues and at high levels in MPM. Many other solid cancers overexpress MSLN, and this is associated with worse survival rates. However, this association has not been found in MPM, and the exact biological role of MSLN in MPM requires further exploration. Here, we discuss the current research on the diagnostic and prognostic value of MSLN in MPM patients. Furthermore, MSLN has become an attractive immunotherapy target in MPM, where better treatment strategies are urgently needed. Several MSLN-targeted monoclonal antibodies, antibody–drug conjugates, immunotoxins, cancer vaccines, and cellular therapies have been tested in the clinical setting. The biological rationale underpinning MSLN-targeted immunotherapies and their potential to improve MPM patient outcomes are reviewed.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 599
Author(s):  
Stephen Ahenkorah ◽  
Irwin Cassells ◽  
Christophe M. Deroose ◽  
Thomas Cardinaels ◽  
Andrew R. Burgoyne ◽  
...  

In contrast to external high energy photon or proton therapy, targeted radionuclide therapy (TRNT) is a systemic cancer treatment allowing targeted irradiation of a primary tumor and all its metastases, resulting in less collateral damage to normal tissues. The α-emitting radionuclide bismuth-213 (213Bi) has interesting properties and can be considered as a magic bullet for TRNT. The benefits and drawbacks of targeted alpha therapy with 213Bi are discussed in this review, covering the entire chain from radionuclide production to bedside. First, the radionuclide properties and production of 225Ac and its daughter 213Bi are discussed, followed by the fundamental chemical properties of bismuth. Next, an overview of available acyclic and macrocyclic bifunctional chelators for bismuth and general considerations for designing a 213Bi-radiopharmaceutical are provided. Finally, we provide an overview of preclinical and clinical studies involving 213Bi-radiopharmaceuticals, as well as the future perspectives of this promising cancer treatment option.


Author(s):  
Tadashi Watabe ◽  
Kazuko Kaneda-Nakashima ◽  
Kazuhiro Ooe ◽  
Yuwei Liu ◽  
Kenta Kurimoto ◽  
...  

Abstract Objective Astatine (211At) is a promising alpha emitter as an alternative to iodine (131I). We are preparing the first-in-human (FIH) clinical trial of targeted alpha therapy for differentiated thyroid cancer in consultation with Pharmaceuticals and Medical Devices Agency. Here, we performed an extended single-dose toxicity examination under a reliability standard, as a preclinical safety assessment of [211At]NaAt to determine the FIH dose. Methods [211At]NaAt solution was injected into normal 6-week-old mice (male (n = 50) and female (n = 50), body weight: male 33.2 ± 1.7 g, female 27.3 ± 1.5 g), which were then divided into four groups: 5 MBq/kg (n = 20), 20 MBq/kg (n = 20), 50 MBq/kg (n = 30), saline control (n = 30). The mice were followed up for 5 days (primary evaluation point for acute toxicity: n = 80) or 14 days (n = 20: evaluation point for recovery) to monitor general condition and body weight change. At the end of the observation period, necropsy, blood test, organ weight measurement, and histopathological examination were performed. For body weight, blood test, and organ weight, statistical analyses were performed to compare data between the control and injected groups. Results No abnormal findings were observed in the general condition of mice. In the 50 MBq/kg group, males (days 3 and 5) showed a significant decrease in body weight compared with the control. However, necropsy did not differ significantly beyond the range of spontaneous lesions. In the blood test, males (50 MBq/kg) and females (50 MBq/kg) showed a decrease in white blood cell and platelet counts on day 5, and recovery on day 14. In the testis, a considerable weight decrease was observed on day 14 (50 MBq/kg), and multinucleated giant cells were observed in all mice, indicating a significant change related to the administration of [211At]NaAt. Conclusions In the extended single-dose toxicity study of [211At]NaAt, administration of high doses resulted in weight loss, transient bone marrow suppression, and pathological changes in the testis, which require consideration in the FIH clinical trial.


RSC Advances ◽  
2017 ◽  
Vol 7 (65) ◽  
pp. 41024-41032 ◽  
Author(s):  
L. Dziawer ◽  
P. Koźmiński ◽  
S. Męczyńska-Wielgosz ◽  
M. Pruszyński ◽  
M. Łyczko ◽  
...  

Gold nanoparticles labeled with 211At are very effective in radionuclide therapy.


Sign in / Sign up

Export Citation Format

Share Document