scholarly journals The potential of river discharge at the peak of the dry season in some disaster-prone area of Merapi Volcano

2021 ◽  
Vol 884 (1) ◽  
pp. 012005
Author(s):  
Kharisma ◽  
MB Prasetyo ◽  
AF Rosa ◽  
I Fitrianingrum ◽  
MAI Wardoyo ◽  
...  

Abstract With a high level of volcanic activity and many people living in the disaster-prone area, sustainable disaster management in the Merapi Volcano area is still very much needed in the future. One of the needs in building disaster management is ensuring water resources available during the pre-eruption period. So far, springs are the primary source of water that has been widely used by residents in the volcanic foothills, which are prone to eruption disasters. However, at the time of the eruption, many springs were not functioning so that alternative water sources were needed. River water can be an alternative water source, and a study of river water's potential is required to ensure its feasibility. This study was conducted on the south to the southwest side of Merapi Volcano to analyze the quantity and quality of river water as an alternative water source. Data collected through observation, literature study, and document search. Data analysis performed using descriptive analysis, matching analysis, and statistical analysis using independent sample t-test and simple linear regression. The study results show that seven rivers in the south to the southwest slope can be used as water sources because they are not lava flows. These rivers have varying discharge and water quality. There is no difference in discharge and water quality between the top and the bottom of the volcano foot. When dry season is on the peak, three rivers have no flow because some springs locations are at the volcano's bottom. Overall, based on these findings, it can be emphasized that the use of water sources is needed to do at the closest point to the evacuation barracks. However, a water treatment installation needs to be provided in the evacuation barracks so that the river water is suitable for consumption.

Author(s):  
Jhanel F. Chew ◽  
Laura Corlin ◽  
Fernando Ona ◽  
Sarah Pinto ◽  
Esther Fenyi-Baah ◽  
...  

Residents in the Eastern Region, Ghana with access to improved water sources (e.g., boreholes and covered wells) often choose to collect water from unimproved sources (e.g., rivers and uncovered wells). To assess why, we conducted two field studies to coincide with Ghana’s rainy and dry seasons. During the rainy season, we conducted semi-structured in-depth interviews among a convenience sample of 26 women in four rural communities (including one woman in the dry season). We asked each participant about their attitudes and perceptions of water sources. During the dry season, we observed four women for ≤4 days each to provide context for water collection and water source choice. We used a grounded theory approach considering the multiple household water sources and uses approach to identify three themes informing water source choice: collection of and access to water, water quality perception, and the dynamic interaction of these. Women selected water sources based on multiple factors, including season, accessibility, religious/spiritual messaging, community messaging (e.g., health risks), and ease-of-use (e.g., physical burden). Gender and power dynamics created structural barriers that affected the use of unimproved water sources. A larger role for women in water management and supply decision-making could advance population health goals.


2015 ◽  
Vol 8 (1) ◽  
pp. 38-42
Author(s):  
Pengfei Si ◽  
Xiangyang Rong ◽  
Angui Li ◽  
Xiaodan Min ◽  
Zhengwu Yang ◽  
...  

As a realization of the energy cascade utilization, the regional energy system has the significant potential of energy saving. As a kind of renewable energy, river water source heat pump also can greatly reduce the energy consumption of refrigeration and heating system. Combining the regional energy and water source heat pump technology, to achieve cooling, heating and power supply for a plurality of block building is of great significance to reduce building energy consumption. This paper introduces a practical engineering case which combines the regional energy system of complex river water source heat pump, which provides a detailed analysis of the hydrology and water quality conditions of the river water source heat pump applications, and discusses the design methods of water intake and drainage system. The results show that the average temperature of cold season is about 23.5 °C, the heating season is about 13.2 °C; the abundant regional water flow can meet the water requirement of water source heat pump unit; the sediment concentration index cannot meet the requirement of river water source heat pump if the water enters the unit directly; the river water chemistry indicators (pH, Cl-, SO42-, total hardness, total iron) can meet the requirement of river water source heat pump, and it is not required to take special measures to solve the problem. However, the problem of sediment concentration of water must be solved.


2012 ◽  
Vol 66 (5) ◽  
pp. 1103-1109 ◽  
Author(s):  
Zenghu Qin ◽  
Mingwei Tong ◽  
Lin Kun

Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source–sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.


2012 ◽  
Vol 15 (4) ◽  
pp. 71-86
Author(s):  
Thang Viet Le ◽  
Triet Minh Lam ◽  
Tan Manh Le ◽  
Tai Manh Pham

The article proposed an appropriate organization modeling for Sai Gon river water quality management based on the analysis having scientific and practical basic about aspects have done and aspects limited of LVS management organization (LVS environmental protection Committee) in past time, lesson learnt from effective LVS management performance of countries in the world as well as based on actual study changes in Sai Gon river water quality in many years and practically coordination management and environmental protection river among local area along river basin. The proposed modeling is feasible and practical aim to protect Sai Gon river water source serving for different purposes such as supply water for domestic demand, industry, irrigation, river landscape – tourism, and waterway etc., towards sustainable development of local area along river basin.


2020 ◽  
Vol 4 ◽  
Author(s):  
Hsin-Bai Yin ◽  
Nidhi Gupta ◽  
Chi-Hung Chen ◽  
Ashley Boomer ◽  
Abani Pradhan ◽  
...  

Treated wastewater (TW) and roof-collected rain water (RW) that meet the required microbial quality as per Food Safety Modernization Act (FSMA) regulation may serve as alternative irrigation water sources to decrease the pressure on the current water scarcity. Alternative water sources may have different water characteristics that influence the survival and transfer of microorganisms to the irrigated produce. Further, these water sources may contain pathogenic bacteria such as Shiga-toxigenic Escherichia coli. To evaluate the risk associated with TW and RW irrigation on the fresh produce safety, the effect of TW and RW irrigation on the transfer of two non-pathogenic E. coli strains as surrogates for E. coli O157:H7 to different lettuce cultivars grown in the field was investigated. Lettuce cultivars “Annapolis,” “Celinet,” and “Coastline” were grown in the field at the Fulton farm (Chambersburg, PA). Approximately 10 days before harvest, lettuce plants were spray-irrigated with groundwater (GW), TW, or RW containing 6 log CFU ml−1 of a mixture of nalidixic acid-resistant E. coli O157:H12 and chloramphenicol-resistant E. coli K12 in fecal slurry as non-pathogenic surrogates for E. coli O157:H7. On 0, 1, 3, 7, and 10 days post-irrigation, four replicate lettuce leaf samples (30 g per sample) from each group were collected and pummeled in 120 ml of buffered peptone water for 2 min, followed by spiral plating on MacConkey agars with antibiotics. Results showed that the recovery of E. coli O157:H12 was significantly greater than the populations of E. coli K12 recovered from the irrigated lettuce regardless of the water sources and the lettuce cultivars. The TW irrigation resulted in the lowest recovery of the E. coli surrogates on the lettuce compared to the populations of these bacteria recovered from the lettuce with RW and GW irrigation on day 0. The difference in leaf characteristics of lettuce cultivars significantly influenced the recovery of these surrogates on lettuce leaves. Populations of E. coli O157:H12 recovered from the RW-irrigated “Annapolis” lettuce were significantly lower than the recovery of this bacterium from the “Celinet” and “Coastline” lettuce (P < 0.05). Overall, the recovery of specific E. coli surrogates from the RW and TW irrigated lettuce was comparable to the lettuce with the GW irrigation, where GW served as a baseline water source. E. coli O157:H12 could be a more suitable surrogate compared to E. coli K12 because it is an environmental watershed isolate. The findings of this study provide critical information in risk assessment evaluation of RW and TW irrigation on lettuce in Mid-Atlantic area.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Memet Varol ◽  
Bülent Gökot ◽  
Aysel Bekleyen

Diyarbakır is the biggest city and the largest urban settlement in the Tigris Basin in Turkey. It has been gradually developing and growing thanks to the Southeastern Anatolia Project (GAP), and is one of the most important centers of industry, agriculture and animal husbandry in the Tigris Basin. The Tigris River is an important water source for the city, and it serves for irrigation, fishing, recreation and receiving wastewater. With the development of industry, agriculture and the growth of urban population, its pollution has become a serious problem. Pollution from domestic, industrial and agricultural activities has led to deterioration of water quality. In this context, the aim of the present study is to identify point sources of pollution and to assess the surface water quality of the Tigris River in the study area by monitoring physicochemical parameters. Diyarbakır produced a negative impact on the Tigris River water quality, particularly after the WWTP discharge. Concentrations of chemical oxygen demand, organic nitrogen, total nitrogen and total phosphorus increased markedly downstream of Diyarbakır WWTP discharge point. During the summer, the extent of organic pollution was so serious in the stations, downstream of WWTP, that dissolved oxygen became almost absent from the river water. The metal concentrations of all water samples were mostly below or close to the maximum permitted concentration for protection of aquatic life and drinking water.


Rangifer ◽  
2004 ◽  
pp. 47-52 ◽  
Author(s):  
Mika Sillanpää ◽  
Riina-Maarit Hulkkonen ◽  
Angela Manderscheid

The need for water quality research on the Tibetan plateau has arisen after the rangeland was allocated and leased as pasture grounds to individual nomadic families in the 1990s. These policies changed the access to water sources. The imposed fencing of the pasture tenures makes the situation even more delicate. Nomadic families are now obliged to use only water sources existing on their own site. The restrictions have caused the urge to use all available water, which resulted in increasing water quality and quantity problems. In the past, natural water sources were in common use. During the Collective era, machine-dug wells near the collective settlements facilitated the procurement of drinking water. Based on recent investigations in Dzoge county (Sichuan province), the nomadic families of some regions considered the availability of adequate drinking water for humans and animals as their biggest problem. For this study, eight water samples were collected from the Dzoge county area. All samples were from different kinds of sources, but all in continuous use by humans and animals. The samples were analyzed for typical potable water quality factors (hygienic and technique-aesthetic). The results show that the Chinese national guideline values were exceeded for NO4-N and PO4-P in most open sampling locations. Those parameters do not spoil the water by themselves, but together with suspended solids and organic materials produce a great environment for bacteria like E. coli and fecal streptococci to grow. The result analysis and pictures seen from the location reveal that bacterial growth may be the biggest problem in water quality. Even primitive protection around the water source (i.e. concrete rings, wooden barriers around edges, covers) seem to have a great impact on water quality.


2021 ◽  
Vol 17 (10) ◽  
Author(s):  
Kanga Idé Soumaila ◽  
Naimi Mustapha ◽  
Chikhaoui Mohamed

The aim of this study is to access the quality of monitored rivers and to map the polluted river sections in the Sebou basin using Geographic Information System (GIS). The potential causes of water quality variation will also be added for suitable measures to be taken. A Water Quality Index (WQI) which developed in Morocco was applied to 17 river water quality monitoring stations with data on 6 parameters (Dissolved oxygen (DO), ammonium ion (NH4 + ), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), fecal coliforms (FC) and total phosphorus (TP)) collected twice during the wet and dry season over 1990-2017 period. The result shows that river water quality is classified as bad, very bad and medium at 59% of the monitoring stations, while 41% are considered as good to excellent. Interpolation of mean values of overall WQI of the 17 river water quality monitoring stations, revealed evidence of quality degradation along several kilometers of most river sections in the Sebou basin. The correlation matrix between the sub-indices of water quality parameters and the overall WQI showed high positive correlation coefficients and highlights the contribution to water quality degradation as follows: TP (𝑟 = +0.96 ) ≥ NH4 + (𝑟 = +0.96 ) > BOD5 (𝑟 = +0.94) > COD (𝑟 = +0.86) > FC (𝑟 = +0.83) > DO (𝑟 = +0.79). The sections of Fès, Innaounene Rivers, and an extended stretch of Tizguit River must no longer be used for irrigation. River water quality is overall of better quality in the wet season compared to the dry season. Simple linear regressions between the seasonal water quality variation and the overall WQI showed higher coefficients of determination R 2 (0.67 and 0.60) between dry season WQI and the overall WQI and between wet season WQI and the overall WQI respectively. It is clear that discharges of industrial and domestic wastewater during the dry season and agricultural activities are most likely to be the causes of the degradation of river water quality.


2019 ◽  
Vol 2 (6) ◽  
pp. 118-127
Author(s):  
Le Ngoc Tuan ◽  
Tao Manh Quan ◽  
Tran Thi Thuy

The South of Binh Duong province has undergone various economic activities and significantly contributed to the local budget, but has also posed adverse impacts on environment where the decrease in surface water quality is a vital of concern. To evaluate the change in surface water quality and carrying capacity of receiving water bodies in southern waterways of Binh Duong province (not mentioned in this work), the surface water quality data was recalled from 25 monitoring stations during 2012 – 2016 and sampled at 93 locations in the dry season of 2017. In the period of 2012 – 2016, the SWQ fluctuated from very poor to good level (WQI = 20 – 88). The sites of interest were the Chom Sao canal (RSG5), Bung Cu stream (RĐN2), and Thi Tinh river (RTT1) (WQI <7) with high concentrations of BOD5, COD, and coliform, etc. In the dry season of 2017, the SWQ was ranged from very poor to good level (WQI = 16 – 88). Some monitoring locations should be taken into consideration were STT2 in Thi Tinh River, MC25 in Cau Dinh stream, MC50 in Cat - Bung Biep stream, and MC91 in Cai stream due to high concentrations of SS, turbidity, NH4+-N, BOD5, COD, etc. Accordingly, it is necessary to continue studying and assessing the waste water generation, the carrying capacity of receiving water bodies in relation to the local socio-economic development plans, as a basic for local surface water management and the sustainable development.  


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2541 ◽  
Author(s):  
Samseh Abdullah Noradilah ◽  
Ii Li Lee ◽  
Tengku Shahrul Anuar ◽  
Fatmah Md Salleh ◽  
Siti Nor Azreen Abdul Manap ◽  
...  

In the tropics, there are too few studies on isolation ofBlastocystissp. subtypes from water sources; in addition, there is also an absence of reported studies on the occurrence ofBlastocystissp. subtypes in water during different seasons. Therefore, this study was aimed to determine the occurrence ofBlastocystissp. subtypes in river water and other water sources that drained aboriginal vicinity of highly endemic intestinal parasitic infections during wet and dry seasons. Water samples were collected from six sampling points of Sungai Krau (K1–K6) and a point at Sungai Lompat (K7) and other water sources around the aboriginal villages. The water samples were collected during both seasons, wet and dry seasons. Filtration of the water samples were carried out using a flatbed membrane filtration system. The extracted DNA from concentrated water sediment was subjected to single round polymerase chain reaction and positive PCR products were subjected to sequencing. All samples were also subjected to filtration and cultured on membrane lactose glucuronide agar for the detection of faecal coliforms. During wet season,Blastocystissp. ST1, ST2 and ST3 were detected in river water samples.Blastocystissp. ST3 occurrence was sustained in the river water samples during dry season. HoweverBlastocystissp. ST1 and ST2 were absent during dry season. Water samples collected from various water sources showed contaminations ofBlastocystissp. ST1, ST2, ST3 and ST4, during wet season andBlastocystissp. ST1, ST3, ST8 and ST10 during dry season. Water collected from all river sampling points during both seasons showed growth ofEscherichia coli and Enterobacter aerogenes, indicating faecal contamination. In this study,Blastocystissp. ST3 is suggested as the most robust and resistant subtype able to survive in any adverse environmental condition. Restriction and control of human and animal faecal contaminations to the river and other water sources shall prevent the transmission ofBlastocystissp. to humans and animals in this aboriginal community.


Sign in / Sign up

Export Citation Format

Share Document