scholarly journals Effect Variation in Agricultural System on Some Alluvial Soil Characteristics in Abu Ghraib Region - Iraq

2021 ◽  
Vol 904 (1) ◽  
pp. 012056
Author(s):  
M T Yaqub ◽  
M A Hassan ◽  
S A Aljaberi

Abstract This study was carried out to determine the effect of the type of agricultural system as a result of exploitation on the characteristics of alluvial soil morphology, physically and chemically, as the study was carried out in the fields of College of Agriculture - Abu Ghraib, during which four agricultural systems were identified, namely, the Crop alfalfa, palms, Cereal, Cowpea as well as the land that is not exploited agricultural. After determining the sites of the examination, pedons were excavated for a representative of each type of agricultural system and their horizons were identified.. The results showed that there are differences in the morphological, chemical and physical properties of soils from one site to another, horizontally and from one horizon to another vertically, due to the effect of the different management method used in each agricultural system in terms of plowing and fertilization compared to soil that is not agricultural utilized.

The work focused on assessing an overview of the agricultural economy in terms of the sustainability of agricultural systems adapted to climatic disturbances that allow ecological agricultural practices. Changing paradigms in agriculture with climate change involves adapting agricultural systems to the risks of using fertilizers in soil treatment, the interdependence of plant-soil water in agricultural practice, and the reduction of nitrate waste are also highlighted in the paper. Expectations regarding the reduction of greenhouse gases in the agricultural system have a long concern, what we propose in this study is that, at the same time, local traditions, the balance of the biosphere must be maintained with local nutrient needs based on climatic and soil characteristics. In the research, we analyzed some of the vulnerabilities, in the sense that, the agricultural practice and tradition must have a denominator in terms of fertilizers considering the risks of pollution or waste.


2021 ◽  
Vol 13 (12) ◽  
pp. 6673
Author(s):  
Lidia Luty ◽  
Kamila Musiał ◽  
Monika Zioło

The functioning of various agroecosystems is nowadays shaped by different farming systems, which may impair their functions, as well as being beneficial to them. The benefits include ecosystem services, defined as economic and noneconomic values gained by humans from ecosystems, through supporting soil formation and nutrient circulation, and the impact of agriculture on climate and biodiversity. Their mutual flow and various disturbances depend on the agroecosystem’s management method, which is associated with the type of management of agricultural land (AL) in individual farms. This paper raises a problem of transformation in the structure of three main farming systems in Poland, in 2004–2018, in relation to the implementation of 16 selected ecosystem services and their scale. Special attention was given to organic farming, as the most environmentally friendly and sustainable. The analysis demonstrates the increase in ALs in that type of production during the analyzed period of time. Disparities of transformation associated with the type of agricultural system were noticeable at the regional level, which were presented in 16 Polish voivodeships. The results of the analysis confirm that the organic system, which is an important carrier of various ecosystem services, gained a stable position. Moreover, areas with integrated farming still do not exceed 0.5% of total agricultural lands in such voivodeships. The analysis of factors influencing the deterioration or disappearance of selected environmental services characterizing agricultural systems indicates the need to depart from an intensive conventional management system.


2017 ◽  
Vol 155 ◽  
pp. 269-288 ◽  
Author(s):  
James W. Jones ◽  
John M. Antle ◽  
Bruno Basso ◽  
Kenneth J. Boote ◽  
Richard T. Conant ◽  
...  

2002 ◽  
Vol 45 (9) ◽  
pp. 19-29 ◽  
Author(s):  
M.R. Burkart ◽  
J.D. Stoner

Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey’s NAWQA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and shallow carbonate aquifers provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The agricultural system of corn, soybeans, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems, although mean nitrate concentrations in counties with dairy, poultry, cattle and grains, and horticulture systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as in Asia, may experience the greatest impact of this practice.


2021 ◽  
Author(s):  
Luca Mauri ◽  
Eugenio Straffelini ◽  
Sara Cucchiaro ◽  
Paolo Tarolli

<p>The presence of roads is closely linked with the activation of land degradative phenomena such as landslides. Factors such as ineffective road management and design, local rainfall regimes and specific geomorphological elements actively influence landslides occurrence. In this context, recent developments in digital photogrammetry (e.g. Structure from Motion; SfM) paired with Remotely Piloted Aircraft Systems (RPAS) increase our possibilities to realize low-cost and recurrent topographic surveys. This allows the realization of multi-temporal (hereafter 4D) and high-resolution Digital Elevation Models (DEMs), fundamental to analyse geomorphological features and quantify processes at the fine spatial and temporal resolutions at which they occur. In this research is presented a 4D comparison of geomorphological indicators describing a landslide-prone agricultural system, so as to detect the noticed high-steep slope failures. The possibility to analyse the evolution of landslide geomorphic features in steep agricultural systems through high-resolution and 4D comparison of such indicators is still a challenge to be investigated. In this research, we considered a case study located in the central Italian Alps, where two shallow landslides (L1, L2) were activated below a rural road within a terraced vineyard. The dynamics of the landslides were monitored through the comparison of repeated DEMs (DEM of Difference, i.e. DoD), that reported erosion values of above 20 m<sup>3</sup> and 10 m<sup>3</sup> for the two landslides zones and deposition values of more than 15 m<sup>3</sup> and 9 m<sup>3</sup> respectively. The elaboration of Relative Path Impact Index (RPII) highlighted the role played by the road in the alteration of surface water flow directions. Altered water flows were expressed by values between 2σ and 4σ of RPII close to the collapsed surfaces. The increasing of profile curvature and roughness index described landslides evolution over time. Finally, the multi-temporal comparison of features extraction underlined the geomorphological changes affecting the study area. The computation of the quality index underlined the accuracy of features extraction. This index is expressed in a range between 0 (low accuracy) and 1 (high accuracy) and resulted equal to 0.22 m, regarding the landslide observed during the first RPAS survey (L1-pre); 0.63 m, concerning the same landslide detected during the second RPAS survey (L1-post); 0.69 m for L2. Results prove the usefulness of high-resolution and 4D RPAS-based SfM surveys for the investigation of landslides triggering due to the presence of roads at hillslope scale in agricultural systems. This work could be a useful starting point for further studies of landslide-susceptible zones at a wider scale, to preserve the quality and the productivity of affected agricultural areas.</p>


2019 ◽  
Vol 11 (13) ◽  
pp. 3745 ◽  
Author(s):  
Alice Soldi ◽  
Maria José Aparicio Meza ◽  
Marianna Guareschi ◽  
Michele Donati ◽  
Amado Insfrán Ortiz

Sustainability is a topic that is at the center of current discussions in the political, economic, social, and environmental fields. For its analysis, an integral and multidisciplinary vision is needed. This work aims to assess the sustainability of agricultural systems in Paraguay through a comparison applying SAFA (Sustainability Assessment of Food and Agriculture Systems) indicators. The research focuses on 15 case studies on the territory of the Eastern Region of Paraguay divided into five classes of agricultural systems: agribusiness, conventional peasant family farming, agroecological peasant family farming, neo-rural farming, and indigenous agriculture. Data were collected through interviews with producers and key informants, direct observation, and scientific literature research in order to assess, through the SAFA Tool Software, the level of sustainability of each agricultural system as a whole and for each sustainability dimension (political, environmental, economic, and social dimension) in a comparative way. It has emerged that producers belonging to conventional peasant family farming, agroecological peasant family farming, neo-rural farming, and indigenous agriculture have achieved levels of sustainability that are similar to each other and very good in all four dimensions of sustainability. Meanwhile, agribusiness achieved moderate scores in the dimensions of governance and environmental integrity, and was good in the economic and social dimension.


Soil Research ◽  
1997 ◽  
Vol 35 (1) ◽  
pp. 163 ◽  
Author(s):  
P. W. Moody ◽  
R. L. Aitken

A paired site (developed v. undeveloped) approach was used to calculate acidification rates in several agricultural systems of tropical and subtropical Queensland. The systems considered were summer crop–winter fallow, grass or grass–legume pastures for hay production, tobacco, sugarcane, table grapes, and bananas. Mean acidification rates varied from -2·4 kmol H+ /ha · year for tobacco to 34·2 kmol H+ /ha · year for bananas. Acidification rates were higher than for comparable systems in temperate Australia. Subsurface acidification occurred under all systems, and was particularly severe under bananas despite the surface application of at least 2·5 t lime or dolomite/ha· year. As bananas can be considered to be a generic perennial horticultural system, subsurface acidification may be a widespread problem in such systems despite surface applications of amendments. There was a wide range in acidification rates within a particular agricultural system, suggesting that management practices can be manipulated to reduce acidification. As the N cycle terms were the major contributors to the acidification under cropping systems, N fertiliser management is likely to be the most critical acidification factor.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 799 ◽  
Author(s):  
Renata Kazimierczak ◽  
Dominika Średnicka-Tober ◽  
Ewelina Hallmann ◽  
Klaudia Kopczyńska ◽  
Krystyna Zarzyńska

An organic agricultural system based on natural methods and means of production is an alternative to intensive agriculture. The available research suggests that organic crops, in comparison to the conventional ones, are richer in phenolics and other antioxidants while containing less undesirable pesticide residues and nitrates. The aim of this study was to determine concentrations of polyphenols, lutein, vitamin C, and nitrates in eight potato cultivars (Mazur, Justa, Lawenda, Lech, Tacja, Laskana, Otolia, Magnolia) grown organically and conventionally in a controlled field experiment in Poland. Significant differences between potato tubers of the tested cultivars coming from organic and conventional production were identified for the majority of parameters. Higher concentrations of nitrates and lutein were found in conventional compared to the organic tubers, while organic potatoes were, on average, richer in phenolic compounds. Among the tested cultivars, Magnolia, Otolia, and Laskara were richest in vitamin C and phenolics. Otolia and Laskara also accumulated the highest levels of nitrates. If further confirmed, these observations might be of importance for the producers and consumers, who increasingly search for foods from sustainable and well-controlled agricultural systems.


2008 ◽  
Vol 23 (04) ◽  
pp. 265-271 ◽  
Author(s):  
John R. Hendrickson ◽  
J.D. Hanson ◽  
Donald L. Tanaka ◽  
Gretchen Sassenrath

AbstractAgriculture has been very successful in addressing the food and fiber needs of today's world population. However, there are increasing concerns about the economic, environmental and social costs of this success. Integrated agricultural systems may provide a means to address these concerns while increasing sustainability. This paper reviews the potential for and challenges to integrated agricultural systems, evaluates different agricultural systems in a hierarchical systems framework, and provides definitions and examples for each of the systems. This paper also describes the concept of dynamic-integrated agricultural systems and calls for the development of principles to use in developing and researching integrated agricultural systems. The concepts in this paper have arisen from the first in a series of planned workshops to organize common principles, criteria and indicators across physiographic regions in integrated agricultural systems. Integrated agricultural systems have multiple enterprises that interact in space and time, resulting in a synergistic resource transfer among enterprises. Dynamic-integrated agricultural systems have multiple enterprises managed in a dynamic manner. The key difference between dynamic-integrated agricultural systems and integrated agricultural systems is in management philosophy. In an integrated agricultural system, management decisions, such as type and amount of commodities to produce, are predetermined. In a dynamic-integrated system, decisions are made at the most opportune time using the best available knowledge. We developed a hierarchical scheme for agricultural systems ranging from basic agricultural production systems, which are the simplest system with no resource flow between enterprises, to dynamic-integrated agricultural systems. As agricultural systems move up in the hierarchy, their complexity, amount of management needed, and sustainability also increases. A key aspect of sustainability is the ability to adapt to future challenges. We argue that sustainable systems need built-in flexibility to achieve this goal.


2012 ◽  
Vol 43 (3) ◽  
pp. 500-522 ◽  
Author(s):  
Stephen Acabado

Most models that explain the development of agricultural systems suggest evolutionary relationships between extensive (e.g. swidden cultivation) and intensive (e.g. wet-rice cultivation) forms of production. Recent information from highland Southeast Asian farming systems questions the validity of this assumption. As a case in point, this article presents the results of a combined ethnographic study and spatial analysis of the Ifugao agricultural system in the northern Philippines, focusing in particular on the relationships among intensive rice terracing, swidden farming and agroforestry (Ifugao forest management). Informed by the Ifugao example, this article suggests that extensive and intensive systems are often concurrent and compatible components of a broad-spectrum lifeway.


Sign in / Sign up

Export Citation Format

Share Document