scholarly journals Design a bee calling tool using a caller voice and honey scent based on arduino and the blynk application

2021 ◽  
Vol 926 (1) ◽  
pp. 012036
Author(s):  
A Thoib ◽  
R Kurniawan ◽  
T H Budianto

Abstract Bees have the characteristics of always moving and will settle in one place because of the source of nectar. Bees use smells (pheromones) as a means of communication. In addition, bees also communicate through body movements called dances waggle and have a frequency range of 200 Hz - 300 Hz. Communication on bees serves to contain information about what will be done by a bee colony. Therefore the authors assume that honey bees can be called. So it is necessary to design a tool that can summon honey bees using the caller’s voice and the aroma of honey. The tool is controlled using Bluino and the Blynk app. The test was carried out using the caller’s voice in the frequency range of 265.9 Hz – 297.2 Hz which was obtained from the sound recording process in the bee colony Apis cerana, so the focus of this research was the process of calling bees Apis cerana. The aroma used is the aroma of resisting honey, the aroma of sugar water, and the aroma of bee attractants. From the results of testing using three kinds of scents for 7 days, the number of bees is called as follows. The aroma of honey against 837 tails, the aroma of sugar water 758 tails, and the aroma of attractant bees 118 tails. Based on the results of the study, the bee-calling device using the aroma of resisting honey was more dominant to use.

Author(s):  
Brandon K Hopkins ◽  
Priyadarshini Chakrabarti ◽  
Hannah M Lucas ◽  
Ramesh R Sagili ◽  
Walter S Sheppard

Abstract Global decline in insect pollinators, especially bees, have resulted in extensive research into understanding the various causative factors and formulating mitigative strategies. For commercial beekeepers in the United States, overwintering honey bee colony losses are significant, requiring tactics to overwinter bees in conditions designed to minimize such losses. This is especially important as overwintered honey bees are responsible for colony expansion each spring, and overwintered bees must survive in sufficient numbers to nurse the spring brood and forage until the new ‘replacement’ workers become fully functional. In this study, we examined the physiology of overwintered (diutinus) bees following various overwintering storage conditions. Important physiological markers, i.e., head proteins and abdominal lipid contents were higher in honey bees that overwintered in controlled indoor storage facilities, compared with bees held outdoors through the winter months. Our findings provide new insights into the physiology of honey bees overwintered in indoor and outdoor environments and have implications for improved beekeeping management.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Liping Sun ◽  
Xueqi Zhang ◽  
Shufa Xu ◽  
Chunsheng Hou ◽  
Jin Xu ◽  
...  

Abstract Background Sacbrood is an infectious disease of the honey bee caused by Scbrood virus (SBV) which belongs to the family Iflaviridae and is especially lethal for Asian honeybee Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV. Currently, there is a lack of an effective antiviral agent for controlling CSBV infection in honey bees. Methods Here, we explored the antiviral effect of a Chinese medicinal herb Radix isatidis on CSBV infection in A. cerana by inoculating the 3rd instar larvae with purified CSBV and treating the infected bee larvae with R. isatidis extract at the same time. The growth, development, and survival of larvae between the control and treatment groups were compared. The CSBV copy number at the 4th instar, 5th instar, and 6th instar larvae was measured by the absolute quantification PCR method. Results Bioassays revealed that R. isatidis extract significantly inhibited the replication of CSBV, mitigated the impacts of CSBV on larval growth and development, reduced the mortality of CSBV-infected A. cerana larvae, and modulated the expression of immune transcripts in infected bees. Conclusion Although the mechanism underlying the inhibition of CSBV replication by the medicine plant will require further investigation, this study demonstrated the antiviral activity of R. isatidis extract and provides a potential strategy for controlling SBV infection in honey bees.


2008 ◽  
Vol 21 (6) ◽  
pp. 481-494 ◽  
Author(s):  
Jerzy Woyke ◽  
Jerzy Wilde ◽  
Maria Wilde ◽  
Venkataramegowda Sivaram ◽  
Cleofas Cervancia ◽  
...  

2018 ◽  
Vol 62 (2) ◽  
pp. 223-232
Author(s):  
Dylan Cleary ◽  
Allen L. Szalanski ◽  
Clinton Trammel ◽  
Mary-Kate Williams ◽  
Amber Tripodi ◽  
...  

Abstract A study was conducted on the mitochondrial DNA genetic diversity of feral colonies and swarms of Apis mellifera from ten counties in Utah by sequencing the intergenic region of the cytochrome oxidase (COI-COII) gene region. A total of 20 haplotypes were found from 174 honey bee colony samples collected from 2008 to 2017. Samples belonged to the A (African) (48%); C (Eastern Europe) (43%); M (Western Europe) (4%); and O (Oriental) lineages (5%). Ten African A lineage haplotypes were observed with two unique to Utah among A lineage haplotypes recorded in the US. Haplotypes belonging to the A lineage were observed from six Utah counties located in the southern portion of the State, from elevations as high as 1357 m. All five C lineage haplotypes that were found have been observed from queen breeders in the US. Three haplotypes of the M lineage (n=7) and two of the O lineage (n=9) were also observed. This study provides evidence that honey bees of African descent are both common and diverse in wild populations of honey bees in southern Utah. The high levels of genetic diversity of A lineage honey bee colonies in Utah provide evidence that the lineage may have been established in Utah before the introduction of A lineage honey bees from Brazil to Texas in 1990.


2014 ◽  
Vol 58 (2) ◽  
pp. 59-70 ◽  
Author(s):  
Seydur Rahman ◽  
Ibamelaker Thangkhiew ◽  
Sudhanya R. Hajong

Abstract The hypopharyngeal gland (HPG) is the principal organ of protein synthesis in honey bees. It is involved in larval rearing. We examined the fresh head weight, HPG acini diameter, and HPG protein content in worker bees engaged in different tasks and under brood and broodless conditions. Scanning electron microscopy revealed that the HPG acini diameter of worker bees was related to their task. The highest HPG volume was found in nurse bees, and the volume regressed when the task changed from guarding to foraging. The fresh head weight was positively correlated with HPG acini diameter. Although, there was no positive correlation between HPG acini diameter and protein concentration, the glandular protein concentration increased progressively in nurse bees and declined in guard and forager bees. Histochemistry revealed similar results. Despite displaying significantly larger glands, guard bee protein secretion was similar to that of the foragers. Brooding had a significant effect on HPG activity. Only worker bees from the colony with an intact brood showed elevated rates of protein synthesis; thus, it is possible that a signal was emitted by the brood, which stimulated protein synthesis in the HPG. However, the size of the HPG was similar in both brood and broodless conditions.


2018 ◽  
Vol 58 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Beverly McClenaghan ◽  
Marcel Schlaf ◽  
Megan Geddes ◽  
Joshua Mazza ◽  
Grace Pitman ◽  
...  

Insects ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 157 ◽  
Author(s):  
Dahe Yang ◽  
Hongxia Zhao ◽  
Junming Shi ◽  
Xiang Xu ◽  
Yanyan Wu ◽  
...  

Honey bees are essential to the functioning of terrestrial ecosystems. However, despite no single factor being blamed for losses of honey bee colonies in Europe and the USA, viruses have been considered as a major driver. Moreover, a virus vector can enhance the titer and virulence of virus such as Varroa destructor can change the virulence of the deformed wing virus. Here, we report molecular evidence for aphid lethal paralysis virus (ALPV) infecting Vespa velutina, which is an important predator of honey bees, especially of Apis cerana. Viral replication and phylogenetic analysis indicated that ALPV can not only replicate in V. velutina and A. cerana, but ALPV from A. cerana (ALPV-Ac) was also significantly associated with that of V. velutina (ALPV-Vv), though distinct from those of Apis mellifera (ALPV-Am). The host state posterior probability displayed that V. velutina is the main viral reservoir between V. velutina and A. cerana. Our results show ALPV had expanded host diversity resulting in potential impacts on the health of pollinators, even on the pollination ecosystem. We suggest further studies should investigate potential risks and impacts on pollinator populations of hornets. These results should have an impact conservation efforts focused on sustaining native pollinator abundance and diversity, and therefore, the crucial ecosystem services that they provide.


2015 ◽  
Vol 26 ◽  
pp. 29-67 ◽  
Author(s):  
Khum Narayan Paudayal ◽  
Ishan Gautam

Pollen analysis of 8 multifloral honey samples collected from 4 locations of Godavari, Lalitpur district, Nepal was performed using Scanning Electron Microscope (SEM). In this investigation, a wide range of foraging plant sources for Apis cerana honey bees was identified which demonstrates the adequate potential for expanding and sustaining beekeeping in this area. The palynological assemblage of a total of 44 species of pollen flora representing 28 families was identified to the generic and some up to species level. Some of the pollen grains identified to only families, belong to Acanthaceae, Apiaceae, Araliaceae, Chenopodiaceae, Compositae, Lamiaceae, Loranthaceae, Meliaceae, Poaceae, Rosaceae, Rutaceae and Pteridaceae. The pollen assemblages in honeys were mostly belonging to angiosperms while the gymnosperm pollen was completely absent. One pteridophyte spore belonging to family Pteridaceae recovered. In this paper the morphology of the pollen grains based on SEM observation are described and the importance of the systematic documentation of various bee flora are discussed.J. Nat. Hist. Mus. Vol. 26, 2012: 29-67


1991 ◽  
Vol 331 (1260) ◽  
pp. 123-129 ◽  

Based on population dynamics, tracheal mite ( Acarapis woodi ) parasitism of colonies of honey bees ( Apis mellifera ) appears to be, potentially at least, regulatory and stable. Empirical and theoretical considerations suggest, however, that intracolony population dynamics of mite-honey bee worker seem to be unstable in managed situations where honey bee worker population is allowed to grow unchecked. Experimental studies showed that tracheal mite population levels increased in a managed honey bee colony but were impaired in one in which brood rearing was interrupted by loss of the queen. Mite densities but not prevalence were lowered in experimental swarms kept from rearing brood. We propose that swarming reduces mite density within a colony, therefore implicating modern techniques of hive management in the sudden historical appearance of the mite on the Isle of Wight.


1981 ◽  
Vol 3 (4) ◽  
pp. 330-341 ◽  
Author(s):  
Karen Campbell ◽  
Ian MacNeill ◽  
John Patrick

Thirty fetuses were observed for 24 hours and one fetus was observed for 20 hours during the last 10 weeks of gestation. Observations were made of the amount of gross fetal body movement in each successive 5 minute observation epoch, thus resulting in 30 time series of 288 observations and one time series of 240 observations. Spectral analysis of these time series demonstrated the presence of significant power in the frequency range of 0.002 to 0.0175 cpm. Application of Box-Jenkins techniques to the time series resulted in the choice of a first-order auto-regression model to fit the data. It was concluded that the incidence of episodes of gross fetal body movements were non-random and were, in fact, pseudoperiodic.


Sign in / Sign up

Export Citation Format

Share Document