scholarly journals Simulation of debris flows in the watershed of the Putih River, Indonesia using SIMLAR 2.1

2021 ◽  
Vol 930 (1) ◽  
pp. 012034
Author(s):  
J Ikhsan ◽  
R Ardiansyah ◽  
D Legono

Abstract In 2010, the eruption of Mount Merapi produced a huge volcanic material for debris flows. One area affected by the debris flows is the watershed of Putih River. To predict the impact caused by debris flows can be done by using software such as the Simulation Lahar (SIMLAR) 2.1. In this paper, debris flow modelling will be carried out using SIMLAR 2.1 in conditions without sabo dams and using sabo dams. This simulation aims to determine the effectiveness of the sabo dams in reducing the impact of debris flows. The data used are rainfall data, DEM and sediment data in Putih River. The results show that the sabo dam building can slow down the velocity of debris flow. In addition, sabo dams also function as a barrier to riverbed erosion in the Putih River watershed. Based on the results above, it can be concluded that SIMLAR 2.1 can predict the impact of debris flows in the Putih River watershed.

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2314 ◽  
Author(s):  
Shu Wang ◽  
Anping Shu ◽  
Matteo Rubinato ◽  
Mengyao Wang ◽  
Jiping Qin

Non-homogeneous viscous debris flows are characterized by high density, impact force and destructiveness, and the complexity of the materials they are made of. This has always made these flows challenging to simulate numerically, and to reproduce experimentally debris flow processes. In this study, the formation-movement process of non-homogeneous debris flow under three different soil configurations was simulated numerically by modifying the formulation of collision, friction, and yield stresses for the existing Smoothed Particle Hydrodynamics (SPH) method. The results obtained by applying this modification to the SPH model clearly demonstrated that the configuration where fine and coarse particles are fully mixed, with no specific layering, produces more fluctuations and instability of the debris flow. The kinetic and potential energies of the fluctuating particles calculated for each scenario have been shown to be affected by the water content by focusing on small local areas. Therefore, this study provides a better understanding and new insights regarding intermittent debris flows, and explains the impact of the water content on their formation and movement processes.


Author(s):  
Hervé Vicari ◽  
C.W.W. Ng ◽  
Steinar Nordal ◽  
Vikas Thakur ◽  
W.A. Roanga K. De Silva ◽  
...  

The destructive nature of debris flows is mainly caused by flow bulking from entrainment of an erodible channel bed. To arrest these flows, multiple flexible barriers are commonly installed along the predicted flow path. Despite the importance of an erodible bed, its effects are generally ignored when designing barriers. In this study, three unique experiments were carried out in a 28 m-long flume to investigate the impact of a debris flow on both single and dual flexible barriers installed in a channel with a 6 m-long erodible soil bed. Initial debris volumes of 2.5 m<sup>3</sup> and 6 m<sup>3</sup> were modelled. For the test setting adopted, a small upstream flexible barrier before the erodible bed separates the flow into several surges via overflow. The smaller surges reduce bed entrainment by 70% and impact force on the terminal barrier by 94% compared to the case without an upstream flexible barrier. However, debris overflowing the deformed flexible upstream barrier induces a centrifugal force that results in a dynamic pressure coefficient that is up to 2.2 times higher than those recommended in guidelines. This suggests that although compact upstream flexible barriers can be effective for controlling bed entrainment, they should be carefully designed to withstand higher impact forces.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Haixin Zhao ◽  
Lingkan Yao ◽  
Yong You ◽  
Baoliang Wang ◽  
Cong Zhang

In this study, we present a new method to calculate debris flow slurry impact and its distribution, which are critical issues for designing countermeasures against debris flows. There is no unified formula at present, and we usually design preventive engineering according to the uniform distribution of the maximum impact force. For conducting a laboratory flume experiment, we arrange sensors at different positions on a dam and analyze the differences on debris flow slurry impact against various densities, channel slopes, and dam front angles. Results show that the force of debris flow on the dam distributes unevenly, and that the impact force is large in the middle and decreases gradually to the both sides. We systematically analyze the influence factors for the calculation of the maximum impact force in the middle point and give the quantitative law of decay from the middle to the sides. We propose a method to calculate the distribution of the debris flow impact force on the whole section and provide a case to illustrate this method.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 328 ◽  
Author(s):  
Dong Nam ◽  
Man-Il Kim ◽  
Dong Kang ◽  
Byung Kim

Recently, human and property damages have often occurred due to various reasons—such as landslides, debris flow, and other sediment-related disasters—which are also caused by regional torrential rain resulting from climate change and reckless development of mountainous areas. Debris flows mainly occur in mountainous areas near urban living communities and often cause direct damages. In general, debris flows containing soil, rock fragments, and driftwood temporarily travel down to lower parts along with a mountain torrent. However, debris flows are also often reported to stream down from the point where a slope failure or a landslide occurs in a mountain directly to its lower parts. The impact of those debris flows is one of the main factors that cause serious damage to structures. To mitigate such damage of debris flows, a quantitative assessment of the impact force is thus required. Moreover, technologies to evaluate disaster prevention facilities and structures at disaster-prone regions are needed. This study developed two models to quantitatively analyze the damages caused by debris flows on structures: Type-1 model for calculating the impact force, which reflected the flow characteristics of debris flows and the Type-2 model, which calculated the impact force based on the topographical characteristics of mountainous regions. Using RAMMS a debris flow runoff model, the impact forces assessed through Type-1 and Type-2 models were compared to check reliability. Using the assessed impact forces, the damage ratio of the structures was calculated and the amount of damage caused by debris flows on the structures was ultimately assessed. The results showed that the Type-1 model overestimated the impact force by 10% and the Type-2 model by 4% for Mt. Umyeon in Seoul, compared to the RAMMS model. In addition, the Type-1 model overestimated the impact force by 3% and Type-2 by 2% for Mt. Majeok in Chuncheon, South Korea.


2020 ◽  
Author(s):  
Carlo Gregoretti ◽  
Matteo Barbini ◽  
Martino Bernard ◽  
Mauro Boreggio

&lt;p&gt;Many sites of the Dolomites are threatened by channelized debris flows: solid-liquid surges initiated by the entrainment of large quantities of sediments into the abundant runoff at the head of channel incised on fans, can dramatically increase their volume along the downstream routing. This is the case of the Rovina di Cancia site where solid-liquid surges forming in the upper part of the basin can increase their volume up and over 50000 m&lt;sup&gt;3&lt;/sup&gt;, seriously impacting the downstream village of Borca di Cadore. The debris-flow channel ends just upstream the village that in the past was hit by four debris flows (three in the recent years) that caused victims and destructions. Control works built until now are not sufficient to protect the village from high magnitude debris flows and a definitive solution calls to be planned. Present works are a flat deposition area, 300 m downstream the initiation area, an open dam under construction downstream it, and &amp;#160;two retention basins at the end of the channel. Between the open dam and the upstream retention basin, there are the rest of eight check-dams made of gabions, built in the 60s and progressively damaged or destroyed by the debris flows occurred after their construction. This series of check-dams limited the entrainment of solid material and the occurrence of localized scours. The initial plan is the substitution of the check-dams with concrete structures and the widening of the dowsntream retention basin through the raising of high elevation embankment downstream it and the following demolition of the actual dyke. Finally, a channel crossing the village and national route on the valley bottom will deliver the fluid phase from the widened basin to the Boite river. All these control works have a very high cost for construction and maintenance and severely impact the village with the presence of a non-negligible residual risk. These drawbacks call for an alternative solution that is searched looking at to the morphology. Downstream of the open dam and on its right side, there is a deep impluvium that ends on a large grass sloping area. The novel solution requires the construction of a channel through the right high bank that deviates the debris flow into the impluvium. The impluvium, widened through the excavation of the surrounding slopes, is closed at the outlet by &amp;#160;an open dam. Downstream the open dam, a channel will lead to a retention basin, where most of storage volume is obtained from the excavation of the grass sloping area, limiting the elevation of the dykes At the end of this basin an open dam will deliver the debris-flow fluid part to a channel passing under the national route and joining the Boite river. Such a solution composed of a deviatory channel, two retention basins (the deep impluvium and that excavated on the sloping grass area) and the channels between and downstream them, has quite a lower costs of construction and maintenance, eliminating the impact on the village because occupying uninhabited areas without interrupting the main roads.&lt;/p&gt;


2006 ◽  
Vol 43 (6) ◽  
pp. 679-689 ◽  
Author(s):  
K A Simpson ◽  
M Stasiuk ◽  
K Shimamura ◽  
J J Clague ◽  
P Friele

The Mount Meager volcanic complex in southern British Columbia is snow and ice covered and has steep glaciated and unstable slopes of hydrothermally altered volcanic deposits. Three large-volume (>108 m3) volcanic debris flow deposits derived from the Mount Meager volcanic complex have been identified. The volcanic debris flows travelled at least 30 km downstream from the volcanic complex and inundated now populated areas of Pemberton Valley. Clay content and mineralogy of the deposits indicate that the volcanic debris flows were clay-rich (5%–7% clay in the matrix) and derived from hydrothermally altered volcanic material. The youngest volcanic debris flow deposit is interpreted to be associated with the last known volcanic eruption, ~2360 calendar (cal) years BP. The other two debris flows may not have been directly associated with eruptions. Volcanic debris flow hazard inundation maps have been produced using the Geographic Information System (GIS)-based modelling program, LAHARZ. The maps provide estimates of the areas that would be inundated by future moderate to large-magnitude events. Given the available data, the probability of a volcanic debris flow reaching populated areas in Pemberton Valley is ~1 in 2400 years. Additional mapping in the source regions is necessary to determine if sufficient material remains on the volcanic edifice to generate future large-magnitude, clay-rich volcanic debris flows.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2201
Author(s):  
Jinn-Chyi Chen ◽  
Wen-Shun Huang

This study examined the conditions that lead to debris flows, and their association with the rainfall return period (T) and the probability of debris flow occurrence (P) in the Chenyulan watershed, central Taiwan. Several extreme events have occurred in the Chenyulan watershed in the past, including the Chi-Chi earthquake and extreme rainfall events. The T for three rainfall indexes (i.e., the maximum hourly rainfall depth (Im), the maximum 24-h rainfall amount (Rd), and RI (RI = Im× Rd)) were analyzed, and the T associated with the triggering of debris flows is presented. The P–T relationship can be determined using three indexes, Im, Rd, and RI; how it is affected and unaffected by extreme events was developed. Models for evaluating P using the three rainfall indexes were proposed and used to evaluate P between 2009 and 2020 (i.e., after the extreme rainfall event of Typhoon Morakot in 2009). The results of this study showed that the P‒T relationship, using the RI or Rd index, was reasonable for predicting the probability of debris flow occurrence.


2008 ◽  
Vol 45 (12) ◽  
pp. 1778-1783 ◽  
Author(s):  
Adam B. Prochaska ◽  
Paul M. Santi ◽  
Jerry D. Higgins

Estimation of the impact forces from boulders within a debris flow is important for the design of structural mitigation elements. Boulder impact force equations are most sensitive to the inputs of particle size and particle velocity. Current guidelines recommend that a design boulder should have a size equal to the depth of flow and a velocity equal to that of the flow. This study used video analysis software to investigate the velocities of different sized particles within debris flows. Particle velocity generally decreased with increasing particle size, but the rate of decrease was found to be dependent on the abilities of particles to rearrange within debris flows.


2010 ◽  
Vol 34 (5) ◽  
pp. 625-645 ◽  
Author(s):  
Michelle Bollschweiler ◽  
Markus Stoffel

The sudden and unpredictable occurrence of debris flows poses major problems in many mountain areas in the world. For a realistic hazard assessment, knowledge of past events is of crucial importance. As archival data is generally fragmentary, additional information sources are needed for an appraisal of past and contemporary events as well as for the prediction of potential future events. Tree rings represent a very valuable natural archive on past debris-flow occurrence as they may record the impact of events in their tree-ring series. In the past few years, dendrogeomorphology has evolved from a pure dating tool to a broad range of applications. Besides the reconstruction of frequencies, tree rings allow — if coupled with spatial positioning methods — the determination of spread and reach of past events. Similarly, the wide field of applications includes the identification of magnitudes and triggers of debris-flow events. Besides demonstrating recent developments in the use of tree rings for debris-flow research, this contribution also provides a short overview on the application of tree rings for other mass-movement processes and highlights further possibilities of the method. Established techniques can be applied to related processes such as debris floods, flash floods or lahars. Data obtained can also be used to calibrate modeling approaches. The impact of past and future climatic changes on debris-flow occurrence is furthermore an important aspect where tree rings can be of help.


2017 ◽  
Author(s):  
Francesco Marra ◽  
Elisa Destro ◽  
Efthymios I. Nikolopoulos ◽  
Davide Zoccatelli ◽  
Jean Dominique Creutin ◽  
...  

Abstract. The systematic underestimation observed in debris flows early warning thresholds has been associated to the use of sparse rain gauge networks to represent highly non-stationary rainfall fields. Remote sensing products permit concurrent estimates of debris flow-triggering rainfall for areas poorly covered by rain gauges, but the impact of using coarse spatial resolutions to represent such rainfall fields is still to be assessed. This study uses fine resolution radar data for ~ 100 debris flows in the eastern Italian Alps to (i) quantify the effect of spatial aggregation (1–20-km grid size) on the estimation of debris flow triggering rainfall and on the identification of early warning thresholds and (ii) compare thresholds derived from aggregated estimates and rain gauge networks of different densities. The impact of spatial aggregation is influenced by the spatial organization of rainfall and by its dependence on the severity of the triggering rainfall. Thresholds from aggregated estimates show up to 8 % and 21 % variations in the shape and scale parameters respectively. Thresholds from synthetic rain gauge networks show > 10 % variation in the shape and > 25 % systematic underestimation in the scale parameter, even for densities as high as 1/10 km−2.


Sign in / Sign up

Export Citation Format

Share Document