scholarly journals Study on behavior of ponding time based on characteristics of infiltration rate and rainfall intensity with varying return period

2021 ◽  
Vol 930 (1) ◽  
pp. 012063
Author(s):  
D Harisuseno ◽  
I K Hidayati ◽  
D N Khaeruddin

Abstract Runoff management is based on two main concepts: controlling runoff discharge and managing concentration (Tc). Tc is closely related to understanding ponding time (tp), which is associated with estimating the length of tp on a land surface. The present study aims to investigate the behavior of tp due to varying infiltration rates (f) and rainfall intensities (i) with different return periods (Tr). The ponding time (tp) was derived from graph analysis of infiltration rate and rainfall intensity with Tr 2, 5, and 10 years. Infiltration measurements were conducted at 8 points using a double-ring infiltrometer. Meanwhile, rainfall data were obtained from 2010 to 2019. The observed tp (tpobs ) was derived through overlying between infiltration rate curve and rainfall intensity. In contrast, empirical tp (tpemp ) was estimated using Horton’s formula. The result confirms that the infiltration rate followed an exponential curve and varying rainfall intensities. Infiltration rates give vary in tp where the longer Tr, the faster the initial time of tp. There was fairly good consistency between tpobs and tpemp as shown by relatively high-value R2 >0.6) for Tr 2, 5, and 10 years. It indicates that the Horton’s formula has reliable to estimate tp in the study area.

2018 ◽  
Vol 10 (3) ◽  
pp. 1073-1077 ◽  
Author(s):  
A H Jagani ◽  
P K Shrivastava ◽  
D K Dwivedi

Infiltration models are used in designing and optimizing irrigation projects as they are capable of predicting infiltration rate and accumulated infiltration depth to a reasonable level of accuracy. The objective of this study deals with obtaining the parameters of infiltration models like Kostiakov and Philip, applying these models to the soil of Dediapada and evaluating their performance by comparing it with the observed infiltration. Firstly, the accumulated infiltration and infiltration rates were determined by the field measurement using a double ring infiltrometer. Kostiakov’s and Philip’s infiltration models were then applied to obtain simulated data once its parameters were ascertained. The estimated parameters ‘m’ and ‘n’ for the Kostiakov model were 0.1311 and -0.3092 respectively and the corresponding equations obtained for estimating infiltration rate and accumulated infiltration depth were 0.13t-0.30 and 0.19t0.69. The estimated parameters ‘s’ and ‘k’ for the Philip model were 0.32 and 0.014 respectively and the corresponding equations obtained for estimating infiltration rate and accumulated infiltration depth were 0.16t-0.5+0.014 and 0.32t0.5+0.014t. The coefficient of determination values for evaluating the performance of the model were obtained in excess of 0.95 for both the models. Due to lack of research on the application of infiltration models on the clay loam soil of Dediapada, this study would prove to be useful for estimation of infiltration rate and depth.


2019 ◽  
Vol 8 (4) ◽  
pp. 7751-7754 ◽  

In the present Outcome Based Education in Engineering, higher order skills in psychomotor domain are required as per Dave’s Taxonomy,Simpson’s Taxonomy and Anita Harrow’s Taxonomy.Not only computational skills are required but also experimental skills to develop the engineering skills life long. According to Walter J. Rawls et.al(1993), infiltration and soil water movement play a key role in surface runoff, groundwater recharge,evapotranspiration, soil erosion and transport of chemicals in surface and subsurface waters.The ASTM International Standard D 3385- 03 describes the “ Standard Test Method for Infiltration Rates of Soils in field using Double Ring Infiltrometer”. The present paper describes the methodology of development of Kostiakov Infiltration Equations from the field tests of Double Ring Infiltrometer,as part of various student projects of design and evaluation of irrigation methods. As properties of soil also influence the infiltration rate, soil properties are also determined. In one test, the Kostiakov infiltration equation fitted is in the form y=0.44t0.65. The basic infiltration rate is 44 millimeters/hour. Other methods of infiltration equations are briefly mentioned.\


Irriga ◽  
2002 ◽  
Vol 7 (1) ◽  
pp. 1-9
Author(s):  
Mario Artemio Urchei ◽  
Carlos Ricardo Fietz

INFILTRAÇÃO DE ÁGUA EM UM LATOSSOLO ROXO MUITO ARGILOSO EM DOIS SISTEMAS DE MANEJO   Mário Artemio UrcheiCarlos Ricardo FietzEmbrapa Agropecuária Oeste, Caixa Postal 661, 79804-970 – Dourados, MSE-mail: [email protected] e [email protected]   1 RESUMO              Este trabalho objetivou caracterizar a infiltração de água em um latossolo roxo muito argiloso em dois sistemas de manejo (preparo convencional - PC e plantio direto - PD) e avaliar a adequação das equações de Horton e Kostiakov-Lewis para a estimativa da taxa de infiltração básica. O trabalho foi desenvolvido na área experimental da Embrapa Agropecuária Oeste, em Dourados, MS, durante os anos de 1994 e 1995. Em cada um dos sistemas foram realizados 25 testes de infiltração pelo método do infiltrômetro de duplo cilindro. Considerou-se como taxa de infiltração básica observada a média aritmética dos valores lidos após 120 minutos, enquanto sua estimativa foi feita pelas equações de Horton e de Kostiakov-Lewis. A taxa de infiltração básica, nos dois sistemas de manejo, ajustou-se à distribuição normal, de acordo com o teste de Kolmogorov-Smirnov, sem diferença entre as médias de 92,2 e 92,8mm h-1 (Tukey, 5%), para os sistemas PC e PD, respectivamente, consideradas muito altas. Esses valores apresentaram alta variabilidade nos dois sistemas, com coeficientes de variação de 78,6% para o PC e 83,5% para o PD. Apesar de as duas equações terem apresentado bom ajuste, os índices estatísticos evidenciaram que a equação de Kostiakov-Lewis é mais adequada para estimar a taxa de infiltração básica no latossolo roxo estudado.   UNITERMOS: Equações de infiltração, plantio direto, preparo convencional.   URCHEI, M. A.,  FIETZ, C.R.  WATER INFILTRATION IN AN OXISOL UNDER TWO CROPPING SYSTEMS   2 ABSTRACT   This work aimed to characterize water infiltration and evaluate the adequacy of Horton and Kostiachov-Lewis’s equations to estimate basic infiltration rate in an Oxisol under conventional tillage (CT) and no tillage (NT). The work was carried out over 1994 and 1995 in an experimental area of Embrapa Agropecuaria Oeste in Dourados city, Mato Grosso do Sul State, Brazil. For each  system  25  infiltration  tests  were  performed  by  the  double  ring infiltrometer method. Basic infiltration rates were  the average  of  infiltration measured  after  120 min of adding water on the soil surface. Estimation of basic infiltration rates has been performed by using Horton and Kostiakov-Lewis’s equations. Basic infiltration rates in both systems followed normal distribution according to Kolmogorov-Smirnov’s test. Average values for basic infiltration were 92.2 and 92.8 mm h-1 for CT and NT systems, respectively. No significantly different means have been observed  (P<0.05). The variation coefficients were 78.6% for CT and 83.5% for NT. In spite of two equations good adequacy, statistical indexes showed that Kostiakov-Lewis’s equation has been more fitted to estimate basic infiltration rates for the  studied Oxisol.  KEYWORDS: Infiltration equations, no tillage, conventional tillage.


Author(s):  
O.O Elemile ◽  
O.O Ibitoye ◽  
O.P Folorunso ◽  
E.M Ibitogbe

The processing of adequate information of characteristics of soils is essential for designing quality soil management and construction practices on agricultural and urban lands. Little is known about the infiltration capacity of soils in institutions of higher learning, this study therefore evaluated the infiltration capacity of soils in the Landmark University, Omu-Aran. The double ring infiltrometer with an inner ring of 30 cm and a 50 cm diameter outer ring with a height of 30 cm above the ground was used to test infiltration rates at two sites, namely the University of Omu-Aran’s orchard area (OA) and the new college building area (NCBA). Six points labelled (A, B, C, D, E and F) were identified at 10 m grid intervals at which infiltration rates were determined using a 30 cm inner ring double ring infiltrometer and a 30 cm height outer ring. Results of soil analysis suggests sand dirty and silt texture and bulk density and particle density varied from 2.54–3.03 g/cm3 and 1.31–1.52 g/cm3 respectively. The infiltration rates ranged between 0.007 to 0.011 cm/sec with a mean of 0.009cm/sec in orchard area (OA) and 0.011 to 0.035 cm/sec with a mean value of 0.021 cm/sec in NCBA indicating a significant difference at both locations. The infiltration rate of soils at the OA is very low compare to that of NCBA therefore the OA is more prone to flooding. Effective drainage control system is recommended along the orchard area to prevent flooding.


2021 ◽  
Vol 331 ◽  
pp. 08002
Author(s):  
Rusli HAR ◽  
Aprisal ◽  
Werry Darta Taifur ◽  
Teguh Haria Aditia Putra

Changes in land use in the Air Dingin watershed (DAS) area in Padang City, Indonesia, lead to a decrease in rainwater infiltration volume to the ground. Some land use in the Latung sub-watershed decrease in infiltration capacity with an increase in surface runoff. This research aims to determine the effect of land-use changes on infiltration capacity and surface runoff. Purposive sampling method was used in this research. The infiltration capacity was measured directly in the field using a double-ring infiltrometer, and the data was processed using the Horton model. The obtained capacity was quantitatively classified using infiltration zoning. Meanwhile, the Hydrologic Engineering Center - Hydrology Modeling System with the Synthetic Unit Hydrograph- Soil Conservation Service -Curve Number method was used to analyze the runoff discharge. The results showed that from the 13 measurement points carried out, the infiltration capacity ranges from 0.082 - 0.70 cm/minute or an average of 0.398 cm/minute, while the rainwater volume is approximately 150,000 m3/hour/km2. Therefore, the soil infiltration capacity in the Latung sub-watershed is in zone VI-B or very low. This condition had an impact on changes in runoff discharge in this area, from 87.84 m3/second in 2010 to 112.8 m3/second in 2020 or a nail of 22.13%. Based on the results, it is concluded that changes in the land led to low soil infiltration capacity, thereby leading to an increase in surface runoff.


2021 ◽  
Vol 930 (1) ◽  
pp. 012054
Author(s):  
I K Hidayati ◽  
Suhardjono ◽  
D Harisuseno ◽  
A Suharyanto

Abstract Ponding time is the period from the beginning of rainfall/infiltration until the occurrence of ponding. This paper aims to determine the infiltration rate and ponding time on different land uses, such as open fields, residential, agriculture, and vegetation. This research was conducted in one of the watersheds in the Brantas River Basin, namely the Lesti River Basin, which is administratively included in the Malang Regency, East Java. The Lesti River is one of the tributaries of the Brantas River, which originates around Mount Semeru, a very intensive area for planting rice, sugar cane, and coffee. Infiltration data were collected at 35 points using a double-ring infiltrometer spread across the Lesti watershed with Andosol, Mediterranean, and Regosol soil types. At the same time, ponding time was obtained from infiltration measurements in the field using the flooding method. The physical properties of the soils were tested in the laboratory to obtain water content, porosity, and bulk density values. This study resulted in the infiltration rate and ponding time for each land use and shows how the physical properties of the soil affect the ponding time.


2021 ◽  
Vol 3 (1) ◽  
pp. 20-32
Author(s):  
Kamaluddin Lubis

The Aceh Tamiang office area is one of the office areas in Kuala Simpang which consists of various offices in the Aceh Tamiang area. The purpose of this research is to identify the drainage condition of the existing primary drainage channel which accommodates runoff discharge, the shape and direction of the flow in the inundation channel in the Aceh Tamiang Kuala Simpang office area, which is expected to help solve the problem of flooding in the 832 m3 / second. And for the channel capacity in this primary drainage drainage of 0.829 m3 / sec, the value is smaller than the planned flood discharge (Qr). Rainfall intensity (I) of 126,432 mm / hour. The plan flood discharge (Qr) for a 5-year return period yields 2,551 m3 / second and the value for channel discharge capacity (Qs) is obtained from the calculation of 2,216 m3 / second. This value is smaller than the value of the planned flood discharge.area. From the results of research conducted by the Aceh Tamiang Kuala Simpang office area is a location with a fairly high degree of rainfall, with a rainfall intensity (I) of 126,432 mm / hour and a flood discharge plan for a 5-year return period obtained a result of 0.


2020 ◽  
Vol 9 (1) ◽  
pp. 26 ◽  
Author(s):  
Dongdong Yang ◽  
Haijun Qiu ◽  
Yanqian Pei ◽  
Sheng Hu ◽  
Shuyue Ma ◽  
...  

Infiltration plays an important role in influencing slope stability. However, the influences of slope failure on infiltration and the evolution of infiltration over time and space remain unclear. We studied and compared the infiltration rates in undisturbed loess and disturbed loess in different years and at different sites on loess landslide bodies. The results showed that the average initial infiltration rate in a new landslide body (triggered on 11 October 2017) were dramatically higher than those in a previous landslide body (triggered on 17 September 2011) and that the infiltration rates of both landslide types were higher than the rate of undisturbed loess. The initial infiltration rate in the new landslide body sharply decreased over the 4–5 months following the landslide because of the appearance of physical crusts. Our observations indicated that the infiltration rate of the disturbed soil in a landslide evolved over time and that the infiltration rate gradually approached that of undisturbed loess. Furthermore, in the undisturbed loess, both the initial and quasi-steady infiltration rates were slightly higher in the loess than in the paleosol, and in the previous landslide body, the infiltration rate was highest in the upper part, intermediate in the middle part, and lowest in the lower part. This study can help us to better understand the evolution process of infiltration in undisturbed loess, previous landslides, and new landslides.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1192
Author(s):  
Lulu Liu ◽  
Han Yu

An unconditionally mass conservative hydrologic model proposed by Talbot and Ogden provides an effective and fast technique for estimating region-scale water infiltration. It discretizes soil moisture content into a proper but uncertain number of hydraulically interacting bins such that each bin represents a collection of pore sizes. To simulate rainfall-infiltration, a two-step alternating process runs until completion; and these two steps are surface water infiltration into bins and redistribution of inter-bin flow. Therefore, a nonlinear dynamical system in time is generated based on different bin front depths. In this study, using rigorous mathematical analysis first reveals that more bins can produce larger infiltration fluxes, and the overall flux variation is nonlinear with respect to the number of bins. It significantly implies that a greater variety of pore sizes produces a larger infiltration rate. An asymptotic analysis shows a finite change in infiltration rates for an infinite number of bins, which maximizes the heterogeneity of pore sizes. A corollary proves that the difference in the predicted infiltration rates using this model can be quantitatively bounded under a specific depth ratio of the deepest to the shallowest bin fronts. The theoretical results are demonstrated using numerical experiments in coarse and fine textured soils. Further studies will extend the analysis to the general selection of a suitable number of bins.


Sign in / Sign up

Export Citation Format

Share Document