scholarly journals Discharge of drill cuttings in the Arctic seas and responses of bottom fauna: bivalve Mytilus edulis L.

2021 ◽  
Vol 937 (2) ◽  
pp. 022041
Author(s):  
A V Gudimov

Abstract Drill cuttings are the largest solid waste of drilling operations. Onsite discharge of drill cuttings into the marine environment is relevant and can be permitted under certain conditions and regulations. Environmental impact of the on-site discharge of drill cuttings is poorly understood for the Arctic shelf. A risk assessment of the discharge is required and the related biological effects are estimated in bioassays on various local species. The sublethal screening tests of water-soluble fraction of drill cutting (WSF DC) were performed on a test-organism of the Barents Sea coast, blue mussel, Mytilus edulis. Physiological (oxygen consumption and filtration rates) and behavioral (shell gaping) activity of mussels was affected by the tested WSF DC above the certain threshold concentration. In general, biological effects of WSF DC might be assumed as a toxic stress of low intensity. Behavioral responses are the most sensitive in blue mussels and behavior of this sentinel organism is to be applied as a reliable indicator of environmental stress. Environmental impact from the drill cuttings of water based drilling fluid appears to be less toxic-stressful for M. edulis and many other bottom invertebrates than it might be expected from release of some drilling fluids.

2009 ◽  
Vol 25 (3) ◽  
pp. 151-162 ◽  
Author(s):  
K. Hatlen ◽  
L. Camus ◽  
J. Berge ◽  
G. H. Olsen ◽  
T. Baussant

1974 ◽  
Vol 52 (3) ◽  
pp. 754-758 ◽  
Author(s):  
S. H. Shin ◽  
C. J. Howitt

Several aqueous solvent systems were tested for their efficiency in extracting luteinizing hormone releasing hormone (LH-RH) from rat hypothalamus. Although LH-RH is a water-soluble decapeptide, neutral distilled water extracted only 10% of the LH-RH obtained using acid extraction methods. The efficiency of the acid extraction procedure suggests that in the hypothalamus the releasing hormone is bound to a relatively large molecular weight compound. Using the acidic extraction procedure, we found that hypothalamic LH-RH content is significantly lower in the castrated animal than in the normal rat.


2011 ◽  
Vol 4 (1) ◽  
pp. 22-25 ◽  
Author(s):  
M Bashir ◽  
I Yusuf ◽  
AS Kutama

Five traditional herbal preparations were sampled between May-June, 2009 in Kano. The samples were investigated for invitro antibacterial activities against clinical isolates of Staphylococcus aureus. Likewise, phytochemical screening tests were conducted to determine some of the phytochemicals present in the ethanolic and water extracts of the samples. Various concentrations of the extracts were prepared using serial doubling dilutions (5000=l/ml, 2500=g/ml, 1250=g/ml, 625=g/ml and 312.5=g/ml). All the test extracts showed slight antibacterial activity against the test organism, with ethanolic extract of sample E having the highest zone diameter of inhibition, while sample H had the lowest diameter of inhibition. The standard antibiotic disc (Gentamicin) had demonstrated the highest activity on the test organisms. The results of the Phytochemical screening revealed the presence of steroid in all the samples, tannin in samples A, C, D and E, reducing sugars in sample A, D and E respectively. The result of the minimum inhibitory concentration (MIC) was found to be above 312.5=g/ml for samples C, D and E. Keywords: Staphylococcus aureus, Herbal preparations, antibacterial activity, Phytochemical screening and minimum inhibitory concentration.


2021 ◽  
Author(s):  
Jaanika Kronberg ◽  
Jonathan Byrne ◽  
Jeroen Jansen ◽  
Philipp Antczak ◽  
Adam Hines ◽  
...  

Abstract The monitoring of anthropogenic chemicals in the aquatic environment including their potential effects on aquatic organisms, is important for protecting life under water, a key sustainable development goal. In parallel with monitoring the concentrations of chemicals of concern, sentinel species are often used to investigate the biological effects of contaminants. Among these, bivalve molluscs such as mussels are filter-feeding and sessile, hence an excellent model system for measuring localized pollution.This study investigates the relationship between the metabolic state of the blue mussel (Mytilus edulis) and its physiology in different environments. We developed a computational model based on a reference site (relatively unpolluted) and integrated seasonal dynamics of metabolite relative concentrations with key physiological indicators and environmental parameters. The analysis of the model revealed that changes in metabolite levels during an annual cycle are influenced by water temperature and are linked to gonadal development. This work supports the importance of data-driven biology and its potential in environmental monitoring.


2018 ◽  
Vol 52 (4) ◽  
pp. 1817-1826 ◽  
Author(s):  
Rosie J. Chance ◽  
Jacqueline F. Hamilton ◽  
Lucy J. Carpenter ◽  
Sina C. Hackenberg ◽  
Stephen J. Andrews ◽  
...  

2021 ◽  
Author(s):  
Thenuka M. Ariyaratna ◽  
Nihal U. Obeyesekere ◽  
Tharindu S. Jayaneththi ◽  
Jonathan J. Wylde

Abstract A need for more economic drilling fluids has been addressed by repurposing heavy brines typically used as completion fluids. Heavy brine corrosion inhibitors have been designed for stagnant systems. Drilling fluids are subjected to both heavy agitation and aeration through recirculation systems and atmospheric exposure during the various stages of the drilling process. This paper documents the development of heavy brine corrosion inhibitors to meet these additional drilling fluid requirements. Multiple system scenarios were presented requiring a methodical evaluation of corrosion inhibitor specifications while still maintaining performance. Due to the high density of heavy brine, traditional methods of controlling foaming were not feasible or effective. Additional product characteristics had to be modified to allow for the open mud pits where employees would be working, higher temperatures, contamination from drill cuttings, and product efficacy reduction due to absorption from solids. The product should not have any odor, should have a high flash point, and mitigate corrosion in the presence of drill cuttings, oxygen, and sour gases. Significant laboratory development and testing were done in order to develop corrosion inhibitors for use in heavy brines based on system conditions associated with completion fluids. The application of heavy brine as a drilling fluid posed new challenges involving foam control, solubility, product stability, odor control, and efficacy when mixed with drill cuttings. The key to heavy brine corrosion inhibitor efficacy is solubility in a supersaturated system. The solvent packages developed to be utilized in such environments were highly sensitive and optimized for stagnant and sealed systems. Laboratory testing was conducted utilizing rotating cylinder electrode tests with drill cuttings added to the test fluid. Product components that were found to have strong odors or low flash points were removed or replaced. Extensive foaming evaluations of multiple components helped identify problematic chemistries. Standard defoamers failed to control foaming but the combination of a unique solvent system helped to minimize foaming. The evaluations were able to minimize foaming and yield a low odor product that was suitable for open mud pits and high temperatures without compromising product efficacy. The methodology developed to transition heavy brine corrosion inhibitors from well completion applications to drilling fluid applications proved to be more complex than initially considered. This paper documents the philosophy of this transitioning and the hurdles that were overcome to ensure the final product met the unique system guidelines. The novel use of heavy brines as drilling fluids has created a need for novel chemistries to inhibit corrosion in a new application.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinliang Liu ◽  
Fengshan Zhou ◽  
Fengyi Deng ◽  
Hongxing Zhao ◽  
Zhongjin Wei ◽  
...  

Abstract Most of bentonite used in modern drilling engineering is physically and chemically modified calcium bentonite. However, with the increase of drilling depth, the bottom hole temperature may reach 180 °C, thus a large amount of calcium bentonite used in the drilling fluid will be unstable. This paper covers three kinds of calcium bentonite with poor rheological properties at high temperature, such as apparent viscosity is greater than 45 mPa·s or less than 10 mPa·s, API filtration loss is greater than 25 mL/30 min, which are diluted type, shear thickening type and low-shear type, these defects will make the rheological properties of drilling fluid worse. The difference is attributed to bentonite mineral composition, such as montmorillonite with good hydration expansion performance. By adding three kinds of heat-resistant water-soluble copolymers Na-HPAN (hydrolyzed polyacrylonitrile sodium), PAS (polycarboxylate salt) and SMP (sulfomethyl phenolic resin), the rheological properties of calcium bentonite drilling fluids can be significantly improved. For example, the addition of 0.1 wt% Na-HPAN and 0.1 wt% PAS increased the apparent viscosity of the XZJ calcium bentonite suspension from 4.5 to 19.5 mPa·s at 180 °C, and the filtration loss also decreased from 20.2 to 17.8 mL.


2020 ◽  
Vol 21 (3) ◽  
pp. 950 ◽  
Author(s):  
Nittiya Suwannasom ◽  
Ijad Kao ◽  
Axel Pruß ◽  
Radostina Georgieva ◽  
Hans Bäumler

Riboflavin (RF) is a water-soluble member of the B-vitamin family. Sufficient dietary and supplemental RF intake appears to have a protective effect on various medical conditions such as sepsis, ischemia etc., while it also contributes to the reduction in the risk of some forms of cancer in humans. These biological effects of RF have been widely studied for their anti-oxidant, anti-aging, anti-inflammatory, anti-nociceptive and anti-cancer properties. Moreover, the combination of RF and other compounds or drugs can have a wide variety of effects and protective properties, and diminish the toxic effect of drugs in several treatments. Research has been done in order to review the latest findings about the link between RF and different clinical aberrations. Since further studies have been published in this field, it is appropriate to consider a re-evaluation of the importance of RF in terms of its beneficial properties.


Drilling operations from platforms in the North Sea result in the production of large quantities of drill cuttings. These are a variable mixture of rock chippings, clays and original drilling fluids. Drilling mud is cleaned on the platform to remove rock chips before re-use of the mud. The rejected fraction from the clean-up plant (the cuttings) contains some of the base drilling fluid, and this can lead to an organically rich input to the sea-bed. Cuttings are discarded immediately underneath the platform jacket and thus build-up over the natural seabed sediment. In many cases this cuttings pile may cover considerable areas of seabed, leading to seabed biological effects and potential corrosion problems. Different types of cuttings have different environmental impacts, this being partly dependent upon their hydrocarbon component. Diesel-oil based cuttings contain significant amounts of toxic aromatic hydrocarbons, whereas low-toxicity, kerosenebased cuttings contain less. Both types of cuttings support an active microbiological flora, initiated by hydrocarbon oxidation. This paper presents a study of microbiological degradation of hydrocarbons in cuttings piles around two North Sea platforms. Results indicate that there is a close correlation between microbiological activity and hydrocarbon breakdown in the surface of cuttings piles and that both of these parameters reach their maximum values closer to the platform when low-toxicity muds are in use.


Sign in / Sign up

Export Citation Format

Share Document