scholarly journals Employing the digital platform for control system development in a coal mining enterprise

2021 ◽  
Vol 942 (1) ◽  
pp. 012012
Author(s):  
Fedor Nepsha ◽  
Kirill Varnavskiy ◽  
Vyacheslav Voronin ◽  
Alexandr Ermakov ◽  
Roman Kostomarov

Abstract The article discusses the issues related with a digital platform for distributed energy resources in the framework of mining enterprises. The paper examines the directions of sustainable development of the infrastructure of a mining enterprise, among which it is necessary to highlight the use of digital twins, taking into account the relationship of technological processes with the processes of transport of electrical energy, the development of small generation and the use of renewable energy sources. The authors proposed a two-level architecture of a coal mine control system, the implementation of which is possible with the introduction of IoT devices. It includes the EDGE layer and the Cloud / on-premise layer, which implement the corresponding functions. In the future, such a control system will make it possible to implement the concept of unmanned mining with the effective use of machine learning methods. In conclusion, it was noted that it is important to ensure the synergy of the developed platform solutions in the electric power industry and the mining industry to reduce the total costs of creating digital mining enterprises and step-by-step implementation of the Industry 4.0 concept.

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1904 ◽  
Author(s):  
Anthony Roy ◽  
François Auger ◽  
Florian Dupriez-Robin ◽  
Salvy Bourguet ◽  
Quoc Tuan Tran

Ocean energy holds out great potential for supplying remote maritime areas with their energy requirements, where the grid size is often small and unconnected to a continental grid. Thanks to their high maturity and competitive price, solar and wind energies are currently the most used to provide electrical energy. However, their intermittency and variability limit the power supply reliability. To solve this drawback, storage systems and Diesel generators are often used. Otherwise, among all marine renewable energies, tidal and wave energies are reaching an interesting technical level of maturity. The better predictability of these sources makes them more reliable than other alternatives. Thus, combining different renewable energy sources would reduce the intermittency and variability of the total production and so diminish the storage and genset requirements. To foster marine energy integration and new multisource system development, an up-to-date review of projects already carried out in this field is proposed. This article first presents the main characteristics of the different sources which can provide electrical energy in remote maritime areas: solar, wind, tidal, and wave energies. Then, a review of multi-source systems based on marine energies is presented, concerning not only industrial projects but also concepts and research work. Finally, the main advantages and limits are discussed.


Author(s):  
B. L. Kolesnikov ◽  
E. M. Egorova ◽  
O. S. Redina

The analysis for the first time of the established occupational diseases to employees of the mining enterprise of the Orenburg region in the regional center of professional pathology of Orenburg Regional Clinical Hospital during 2016-2018 is carried out.


2017 ◽  
Vol 3 (2) ◽  
pp. 88
Author(s):  
Suci Rahmatia ◽  
Marsah Zaysi Makhudzia

<p><em>Abstrak <strong>- </strong></em><strong>Transformator adalah peralatan listrik yang sangat vital dalam proses pembangkitan maupun transmisi energi listrik karena transformator dapat menaikkan atau menurunkan tegangan. Pada proses menaikkan dan menurunkan tegangan biasanya sering timbul panas akibat rugi – rugi tembaga pada inti besi dan kumparannya sehingga pada kondisi overload akan menimbulkan pemanasan yang berlebih dan dapat mempengaruhi kinerja transformator. Oleh karena itu dibuat sistem kontrol temperatur pada transformer yang dapat mengontrol temperatur di dalam transformator saat bekerja pada kondisi overload, sehigga transformatornya tidak terbakar. Dial thermometer digunakan sebagai alat yang mengontrol temperatur transformator pada sistem kontrol temperatur. Agar mendapatkan sistem kontrol yang optimal, maka setting temperatur pada dial thermometer di sesuaikan dengan temperatur maksimal tranformator dapat bekerja. Sehingga pada saat temperatur tertentu dial thermometer dapat memberikan sinyal untuk membunyikan alarm dan mengaktifkan kontrol kipas sehingga kipas dapat bekerja menurunkan temperatur transformator.<em></em></strong></p><p><strong><em> </em></strong></p><p><strong><em>Kata kunci - </em></strong><em>transformator, rugi – rugi tembaga, temperatur, sistem kontrol, dial thermometer<strong>.</strong></em></p><p><strong><em> </em></strong></p><p><em>Abstract <strong>- </strong></em><strong>A transformer is an electrical device that is vital in the generation and transmission of electrical energy because the transformer can raise (stepping up) or lower (stepping down) the voltage. In the process of raising and lowering the voltage is usually often caused heat loss of copper in iron core and coil so that the overload condition will cause excessive warming and can affect the performance of the transformer. Therefore, a temperature control system on the transformer can control the temperature inside the transformer while working under overload conditions, so the transformer is not burned. Dial thermometer is used as a device that controls the temperature of the transformer in the temperature control system. In order to obtain an optimal control system, the temperature setting on the dial thermometer adjusted to the maximum transformer temperature can work. So that when a certain temperature dial thermometer can provide a signal to sound the alarm and activate the fan control so that the fan can work down the transformer temperature.</strong></p><p><strong> </strong></p><p><strong><em>Keywords -  </em></strong><em>transformator, loss of copper, themperature, control system, dial thermometer<strong></strong></em></p>


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1988
Author(s):  
Ioannis E. Kosmadakis ◽  
Costas Elmasides

Electricity supply in nonelectrified areas can be covered by distributed renewable energy systems. The main disadvantage of these systems is the intermittent and often unpredictable nature of renewable energy sources. Moreover, the temporal distribution of renewable energy may not match that of energy demand. Systems that combine photovoltaic modules with electrical energy storage (EES) can eliminate the above disadvantages. However, the adoption of such solutions is often financially prohibitive. Therefore, all parameters that lead to a functionally reliable and self-sufficient power generation system should be carefully considered during the design phase of such systems. This study proposes a sizing method for off-grid electrification systems consisting of photovoltaics (PV), batteries, and a diesel generator set. The method is based on the optimal number of PV panels and battery energy capacity whilst minimizing the levelized cost of electricity (LCOE) for a period of 25 years. Validations against a synthesized load profile produced grid-independent systems backed by different accumulator technologies, with LCOEs ranging from 0.34 EUR/kWh to 0.46 EUR/kWh. The applied algorithm emphasizes a parameter of useful energy as a key output parameter for which the solar harvest is maximized in parallel with the minimization of the LCOE.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2212
Author(s):  
Ewelina Kochanek

The aim of the research is to analyse the energy transition in the Visegrad Group countries, because they depend on the production of energy from the burning of fossil fuels, and transition is a huge challenge for them. The diversity of the energy transformation in the V4 countries was examined by using two qualitative methods, including literature analysis and comparative analysis. The timeframe of the study was set for the period from 2020 to 2030, as these years are crucial for the implementation of the European Green Deal Programme. Four diagnostic features were taken into account in the analysis: the share of RES in final energy consumption, reduction of CO2 emissions in the non-Emissions Trading System (ETS) sector, date of withdrawal of coal from the economy, and energy efficiency. The analysis shows that the V4 countries have different approaches and levels of energy transformation in their economies. Poland is in the most difficult situation, being the most dependent on the production of electricity from coal, as well as having the largest number of employees in the coal and around coal sector. The other countries of the group can base their transformation on nuclear energy, as each of them has at least four such power units. The increased use of biomass for energy and heat production is the most important stimulus for Renewable Energy Sources (RES) growth in the analysed countries. The ambivalent attitude of the political elite to unconventional sources in the four analysed countries significantly hinders the development of certain forms of green energy. However, it has been observed that an increasing proportion of the population, especially those living in regions of the country where there is no fossil fuel mining industry, has a positive attitude towards energy transformation. The study is the first that shows the state of involvement in the process of systemic change of the Visegrad Group countries. The results can serve as a starting point for understanding the reticence of this group of European countries towards the transformation phenomenon, as well as contributing to further research on the implementation of closed-circuit economies in the Visegrad Group countries.


Author(s):  
Naglaa Kamel Bahgaat ◽  
Nariman Abdel Salam ◽  
Monika Mady Roshdy ◽  
Sandy Abd Elrasheed Sakr

Rapid growth in mobile networks and the increase of the number of cellular base stations requires more energy sources, but the traditional sources of energy cause pollution and environmental problems. Therefore, modern facilities tend to use renewable energy sources instead of traditional sources. One renewable source is the photovoltaic panel, which made from semiconductor materials which absorb sunlight to generate electricity. This article discusses the importance of using solar panels to produce energy for mobile stations and also a solution to some environmental problems such as pollution. This article provides a design for a solar-power plant to feed the mobile station. Also, in this article is a prediction of all loads, the power consumed, the number of solar panels used, and solar batteries can be used to store electrical energy. Finally, an estimation of the costs of all components will be presented. Good discussion and conclusion will be presented about the results obtained. The results obtained are promising. In addition, a future plan is described to complete this important study.


Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


2021 ◽  
Vol 4 (2) ◽  
pp. 22-26
Author(s):  
Hadi Santoso ◽  
Eris Santoso ◽  
Ruslim Ruslim

The supply of electrical energy in Tarakan City, North Kalimantan, still relies on diesel power which uses a limited number of petroleum energy sources. There is a need for research related to renewable energy sources that have the potential to become alternative energy for the people of Tarakan City. Water is an energy source that has great potential to generate electricity. The energy source that should be taken into account is micro-hydro which can be used as a Micro-hydro Power Plant (PLTMH). A survey of micro-hydro sources in Tarakan City, precisely in the Karungan area, East Mamburungan Village, has been carried out with the direct measurement method of water discharge and the relationship with the power generated. The result shows the water source has a discharge 0.00034 m3/ s, the water velocity of 0.035 m/s and generates power only up to 1.1 watts. Based on the power obtained, the water source in this place cannot be used as a source of micro-hydro energy, but has the potential as a source of pico-hydro energy.


2021 ◽  
Vol 1 (11) ◽  
pp. 75-82
Author(s):  
Elena V. Karanina ◽  
◽  
Maxim A. Bortnikov ◽  

Many leading world powers are already setting ambitious goals to achieve zero CO2 emis-sions in the electric power industry through the use of renewable energy sources (RES) in the near future. In Russia, this type of generation also received state support, however, more modest, due to the low intercon-nection between Russia and renewable energy sources in terms of the state's energy security. The purpose of the study is to determine the effectiveness of the existing support for renewable energy in the Russian Federation, to assess the feasibility of building these facilities in our country, as well as to provide a scientifically substantiated proposal for alternative ways of developing the industry. The paper analyzes and summarizes the economic aspects of investment and operating activities of wind, solar and small hydropower in Russia. As a result, it was concluded that the pace of development chosen by the Ministry of Energy of the Russian Federation can be considered correct, but it is necessary to adjust the support program and diversify in terms of the subjectivity of the construction of new generating facilities based on RES.


Sign in / Sign up

Export Citation Format

Share Document