scholarly journals Carbon stock estimation and mapping of mangrove forest using ALOS-2 PALSAR-2 in Benoa Bay Bali, Indonesia

2021 ◽  
Vol 944 (1) ◽  
pp. 012044
Author(s):  
I G A I Mahasani ◽  
T Osawa ◽  
I W S Adnyana ◽  
A A M A P Suardana ◽  
Chonnaniyah

Abstract Mangrove forests in tropics coastlines area play an essential role in carbon fixation and carbon storage. Mangrove forests in coastal areas are very effective and efficient in reducing the concentration of carbon dioxide (CO2) in the atmosphere because mangroves can absorb CO2 through photosynthesis by diffusion through stomata and then store carbon in the form of biomass. With the lack of efforts to manage mangrove forests, it needs to be developed so that forest functions can be utilized sustainably. This paper describes examining the use of remote sensing data, particularly dual-polarization ALOS-2 PALSAR-2 data, with the primary objective to estimate the carbon stock of mangrove forests in Benoa Bay, Bali. The carbon stock was estimated by analyzing HV Polarization, Above Ground Biomass (AGB), and ground biomass (BGB). The total carbon stock was obtained by multiplying the total biomass with the organic carbon value of 0.47. The potential carbon stock in the mangrove Benoa Bay area is 209,027.28 ton C to absorb carbon dioxide (CO2) of 767,130.11 ton CO2 Sequestration same with 3.87 X 1011 bottles in 2015 and 204.422,59 ton C to absorb carbon dioxide (CO2) of 750.230,93 ton CO2 Sequestration same with 3.79 x 1011 bottles in 2020.

Author(s):  
Amandangi Wahyuning Hastuti ◽  
Komang Iwan Suniada ◽  
Fikrul Islamy

Mangrove vegetation is one of the forest ecosystems that offers a potential of substantial greenhouse gases (GHG) emission mitigation, due to its ability to sink the amount of CO2 in the atmosphere through the photosynthesis process. Mangroves have been providing multiple benefits either as the source of food, the habitat of wildlife, the coastline protectors as well as the CO2 absorber, higher than other forest types. To explore the role of mangrove vegetation in sequestering the carbon stock, the study on the use of remotely sensed data in estimating carbon stock was applied. This paper describes an examination of the use of remote sensing data particularly Landsat-data with the main objective to estimate carbon stock of mangrove vegetation in Perancak Estuary, Jembrana, Bali. The carbon stock was estimated by analyzing the relationship between NDVI, Above Ground Biomass (AGB) and Below Ground Biomass (BGB). The total carbon stock was obtained by multiplying the total biomass with the carbon organic value of 0.47. The study results show that the total accumulated biomass obtained from remote sensing data in Perancak Estuary in 2015 is about 47.20±25.03 ton ha-1 with total carbon stock of about 22.18±11.76 tonC ha-1and CO2 sequestration 81.41±43.18 tonC ha-1.


2018 ◽  
Vol 6 (2) ◽  
pp. 51
Author(s):  
Kristian Gomos Banjarnahor ◽  
Agus Setiawan ◽  
Arief Darmawan

Carbon dioxide (CO2) is a greenhouse gas that could increase earth temperature. Through the photosynthesis process, plants absorb CO2 then convert it into carbohydrates, then sequester it in the body of plants. The purpose of the study is to estimate the changes in the carbon stock at the Arboretum University of Lampung. The methods used were stock difference by counting the carbon changes or difference between carbon stored in 2010 and 2016. While the stand biomass estimation measured by trees general allometric equations with non-destructive sampling. The results showed that the total carbon was 46% of the total biomass. Carbon stock in 2016 were about 226.75 ton/ha, showing an increase of 59.72% or 84.78 ton/ha compared to in 2010’s. The increase was due to additional growth of 804 trees as a result of plantation activity and natural regeneration. Keywords: Arboretum, biomass, carbon, necromass, University of Lampung.


2019 ◽  
Vol 8 (2) ◽  
Author(s):  
A.M.S.K. Abeysekara ◽  
S.K. Yatigammana ◽  
K.T. Premakantha

Carbon dioxide has gained lot of attention in recent past as a greenhouse gas, and therefore it has a potential to affect the climate pattern of the world. Several anthropogenic activities are known to be responsible for the increased level of carbon in the atmosphere and disruption of the global carbon cycle. However, nature has its own mechanism of sequestering and storing the carbon in its “reservoirs”. Forest has the ability to sequester carbon in their biomass and reduce the rate of increase of atmospheric carbon dioxide. The carbon sequestered in the forest trees are mostly referred to as the biomass of a tree or a forest. It has been identified five carbon pools of the terrestrial ecosystem, involving biomass. The study was designed to estimate biomass stock and then the carbon stock of the Udawattakele Forest Reserve (7°17'58 "N, 80°38'20’’E) in Kandy, Sri Lanka. Allometric equations were used to calculate biomass of trees. The total biomass stock was estimated to be 9475.56 t ha-1 (Mega gram-Mg) and the total carbon stock was estimated to be 4,453.55 t ha-1 (Mg) in the Udawattakele Forest Reserve (UFR). This amount is equivalent to 16,344.52 Mg of carbon dioxide in the atmosphere. UFR holds a moderate amount of biomass/carbon stock and the total carbon density of natural forest and plantations was found to be 36.55 Mg ha-1 and 44.89 Mg ha-1 respectively.


Author(s):  
Rathod Digvijaysinh ◽  
Yogesh Kumar ◽  
Gaurav Chand Ramola ◽  
Dhaval Prajapati ◽  
C. S. Dhanai ◽  
...  

Deodar is typically gregarious and is usually found in pure stands. It is one of the most important timber species in the forests of North Indian Himalayas. The objective of the present study was the assessment of variation in volume and biomass along with the carbon holding capacity of different deodar forests. The present study was undertaken in ten different forests sites, assessed by laying out three 0.1 ha sample plots randomly on each location. Total enumeration of trees within the sample plot was done by measuring girth and height of all the trees. Further, data collected from stand were computed for dbh, basal area, volume, stand density and canopy cover. The above ground biomass densities (AGBD), below ground biomass density (BGBD), total biomass density (TBD), total carbon density (TCD) were examined for variation of biomass and carbon stock. The results derived from field data during the study revealed that the values range from 42.10 to 57.07 cm (diameter at breast height), 1.37 to 2.84 m2 trees-1 (basal area), 19.68 to 37.64 m (height), 1.44 m3 tree-1 to 4.27 m3 tree-1 (volume), 227 to 407 individual ha-1 (stand density) and 57.91% to 80.60% (canopy cover) respectively. The values of AGBD (428.57 to 1279.51 Mg ha-1), BGBD (97.41 to 256.14 Mg ha-1), TBD (525.98 to 1535.65 Mg ha-1), and TCD (767.83 to 262.99 Mg ha-1) were recorded in different study sites and highest values was observed in Kanasar-I site. On the basis of above results it can be concluded that the healthy stand growth means presence of trees in all diameter classes. The Kanasar-I has more prominent capacity to storage biomass and carbon stock. Deodar being a slow growing conifer will provide a long term and high carbon storage than broadleaf species forest. Therefore, protecting deodar forest would have the largest impact, per unit area, on reducing carbon emission from deforestation.


2020 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Juwari ◽  
Daddy Ruhiyat ◽  
Marlon Ivanhoe Aipassa

Mangrove forests were a typical type of tropical and subtropical forest, growing along beaches or river mouths that were affected by tides. Mangroves were often found in coastal areas that were protected from the onslaught of waves and sloping areas. Mangrove forest ecosystems had the function of absorbing carbon dioxide (CO2) from the air and storing carbon in the form of biomass. This research was conducted in September 2017. This study aimed to determine the growth, carbon stocks and biomass in mangrove forests in the area of Taman Hutan Raya Ngurah Rai (Sanur) Denpasar. Making research plots used the transect method with a size of 20 meters x 50 meters as many as 3 plots along the coast. From the measurement results, the total value of the base area in plot A was 2.37 m2 / tree, branch-free volume was 16.57 m3 / tree, biomass was 13,591 tons / plot, carbon stock was 6,795 tons / plot, the average increment was 0, 29 cm / year / tree. While the results of the measurement of the total value of the base area in plot B was 13.20 m2 / tree, branch-free volume of 14.87 m3 / tree, biomass of 8,420 tons / plot, carbon stock of 4,210 tons / plot, average increment amounting to 0.39 cm / year / tree. Furthermore, the total value of the base area in plot C was 12.96 m2 / tree, branch-free volume was 14.83 m3 / tree, biomass was 8,265 tons / plot, carbon stock was 4,132 tons / plot, the average increment was 0, 40 cm / year / tree. The salinity value of plot A = 0.10% with a pH of 6.68, plot B = 0.09% with a pH of 6.78 and plot C = 0.08% with a pH of 6.78. Based on the calculation results, it could be concluded that the total biomass value of plot A = 13,592 tons / plot, plot B = 14,866 tons / plot and plot C = 8,265 on / plot and then carbon stock plot A = 6,796 tons / plot, plot B = 8,420 tons / plot and plot C = 4.133 tons / plot. The average increment per tree obtained values for plot A = 0.29 cm / tree / year, plot B = 0.39 cm / tree / year and plot C = 0.40 cm / tree / year.


Author(s):  
IGA Indah Mahasani ◽  
Takahiro Osawa ◽  
I Wayan Sandi Adnyana

Mangrove forests are distributed in limited areas around along costlines, but they play important role in carbon fixation and carbon storafe in the tropic areas. Mangrove forests are a transitional ecosystem between land-based oceans, most of which are well-known along the tropic and subtropical coastlines. Mangrove ecosystems have an ecological function as an absorber and storage of carbon in the form of biomass. Remote sensing technology can include data spatially and temporally. This makes it easy to predict the overall extent and carbon stock. So that in the context of sustainable management of mangrove ecosystems it can be utilized to monitor mangrove carbon balance and become the basis for policy development. The objective of this study was to determine the potential above ground biomass model from ALOS-2 PALSAR-2 data in mangrove forests of Benoa Bay, Bali. In this research, the filter used is frost filtering. AGB model was constructesd by using dual-polarization L-band SAR of ALOS-2 PALSAR-2 data and field inventory plots. 40 plots were collected in the field and the allometric equation. The prediction model for aboveground biomass potential based on the ALOS-2 PALSAR-2 image on HV polarization in the mangrove Benoa Bay area, the correlation value (r) of 0.82, the coefficient of determination (R2) of 0.68. Validation model aboveground biomass-based, correlation value (r) of 0.90, the coefficient of determination (R2) of 0.82, and RMSE of ± 39.85. The potential of aboveground biomass and carbon stock in the mangrove Benoa Bay area is 364,241.87 Mg and 171,193.67 Mg C with the ability to absorb carbon dioxide (CO2) of 628,280.81 Mg CO2 Sequestration same with 3 bottles in 2020.Keywords: Mangrove; Aboveground biomass (AGB); HV Polarization; ALOS-2 PALSAR-2.


2016 ◽  
Author(s):  
C. Frankenberg ◽  
S. S. Kulawik ◽  
S. Wofsy ◽  
F. Chevallier ◽  
B. Daube ◽  
...  

Abstract. In recent years, space-borne observations of atmospheric carbon-dioxide (CO2) have become increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network TCCON. Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the HIAPER Pole-to-Pole Observations (HIPPO) flights from January 2009 through September 2011 to validate CO2 measurements from satellites (GOSAT, TES, AIRS) and atmospheric inversion models (CarbonTracker CT2013B, MACC v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, esp. at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of −0.06 ppm and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20 and 50 atmospheric soundings have been averaged for GOSAT, TES and AIRS, respectively. Overall, we find that GOSAT soundings over the remote pacific ocean mostly meet the stringent accuracy requirements of about 0.5 ppm for space-based CO2 observations.


Author(s):  
K.K. Vikrant ◽  
D.S. Chauhan ◽  
R.H. Rizvi

Climate change is one of the impending problems that have affected the productivity of agroecosystems which calls for urgent action. Carbon sequestration through agroforestry along altitude in mountainous regions is one of the options to contribute to global climate change mitigation. Three altitudes viz. lower (286-1200m), middle (1200-2000m), and upper (2000-2800m) have been selected in Tehri district. Ten Quadrates (10m × 10 m) were randomly selected from each altitude in agrisilviculture system. At every sampling point, one composite soil sample was taken at 30 cm soil depth for soil organic carbon analysis. For the purpose of woody biomass, Non destructive method and for crop biomass assessment destructive method was employed. Finally, aboveground biomass (AGB), belowground biomass carbon (BGB), Total tree Biomass (TTB), Crop biomass (CB), Total Biomass (TB), Total biomass carbon (TBC), soil organic carbon (SOC), and total carbon stock (TC) status were estimated and variables were compared using one-way analysis of variance (ANOVA).The result indicated that AGB, BGB, TTB, CB , TB, TBC, SOC, and TC varied significantly (p < 0.05) across the altitudes. Results showed that total carbon stock followed the order upper altitude ˃ middle altitudes ˃ lower altitude. The upper altitude (2000-2800 m) AGB, BGB,TTB, TBC,SOC, and TC stock was estimated as 2.11 Mg ha-1 , 0.52 Mg ha-1, 2.63 Mg ha-1, 2.633 Mg ha-1, 1.18 Mg ha-1 , 26.53 Mg ha-1, 38.48 Mg ha-1 respectively, and significantly higher than the other altitudes. It was concluded that agrisilviculture system hold a high potential for carbon storage at temperate zones. Quercus lucotrichophora, Grewia oppositifolia and Melia azadirach contributed maximum carbon storage which may greatly contribute to the climate resilient green economy strategy and their conservation should be promoted.


1987 ◽  
Vol 44 (12) ◽  
pp. 2102-2117 ◽  
Author(s):  
Russell L. Cuhel ◽  
David R. S. Lean

Sequential 4- to 6-h in situ measurements of carbon dioxide and sulfate uptake showed midday deepening of the depth of Pmax and photoinhibition of upper water column samples. Analysis of subcellular fractions accentuated total uptake measurements, with net protein synthesis providing a direct measure of growth. The percentage of carbon assimilated into protein was smallest at the depth of maximum photosynthesis and increased with light limitation. Summed incubations agreed well with all-day deployments for total carbon fixation and protein synthesis. Assimilation numbers were consistently low (<2.5 g C∙g Chl a−1∙h-1 with integrated (0–20 m) areal production of 616–1467 mg C∙m−2 and 7.5–32.4 mg S∙m−2 during the light day. Nonreductive sulfate assimilation (predominantly ester-SO4−) accounted for up to 40% of the total sulfate uptake when diatoms predominated. Protein synthesis measured with 35S (200–1000 mg protein∙m−2 during the light day) increased 57–89% overnight. Hourly rates were similar during light and scotophase incubations. Night metabolism substantially altered the biochemical composition (e.g. protein, lipid, and carbohydrate) of the plankton with respect to newly incorporated carbon. Combined plant-specific H14CO3− and general microbial 3SSO42− techniques suggested algal dominance in the mixed layer.


2020 ◽  
Vol 21 (12) ◽  
Author(s):  
Normah Awang Besar ◽  
NURUL SYAKILAH SUHAILI ◽  
JIM LIEW JUN FEI ◽  
FAUZAN WAJDI SHA’ARI ◽  
MUHAMMAD IZZUDDIN IDRIS ◽  
...  

Abstract. Besar NA, Suhaili NS, Fei JLJ, Sha’ari FW, Idris MI, Hatta SH, Kodoh J. 2020. Carbon stock estimation of Sulaman Lake Forest Reserve in Sabah, Malaysia. Biodiversitas 21: 5657-5664. Mangrove forest has a significant role in sequestering carbon gases from the atmosphere but there are lesser literature has been made on it. This research was conducted to quantify the aboveground, belowground and soil carbon stock in Sulaman Lake Forest Reserve, Sabah, Malaysia. Nine transect lines with 125 m length were established and a circle with 7 m radius was set in every 25 m. Forest inventory was done to get the diameter breast height of standing trees and soil sampling with four different depths (0-15 cm, 15-30 cm, 30-50 cm and 50-100 cm) were taken for soil analysis and bulk density. Allometric equation was used to calculate aboveground and belowground biomass then its carbon stock was estimated as 50% from its total biomass. The result shows the total carbon stock in the study area was 441.72 Mg C ha-1, and soil has the highest value of carbon stock (351.98 ± 11.73 Mg C ha-1) followed by aboveground carbon (67.30 ± 20.55 Mg C ha-1) and belowground carbon (22.44 ± 0.17 Mg C ha-1). This study found that soil carbon stock made up almost 80% of the total carbon stock in the mangrove forest. This ecosystem also shows a higher value of carbon stock compared to other locations hence emphasized the importance of prioritizing a mangrove forest in any climate mitigation efforts.


Sign in / Sign up

Export Citation Format

Share Document