scholarly journals A Comparison Between Half and Full Fins at Nanofluids in Transformers

2022 ◽  
Vol 961 (1) ◽  
pp. 012088
Author(s):  
Sajeda Abd Ali ◽  
Ibtisam A. Hasan ◽  
Ekbal Hussain

Abstract Power transformers characterize the biggest section of capital investment within the distribution substations as well as transmission. Additionally, outages of those transformers have a substantial economic influence on the functioning of an electrical network due to the fact that the power transformers are one of the utmost overpriced constituents in an electricity structure. A suggested thermal model for a distribution transformer is investigated. The temperature distribution in the three-phase transformer (250 KVA 11/.416 KV core type, mineral oil) was obtained using “COMSOL PROGRAM” after a 3D simulation utilizing a transient analysis in light of the Finite Element Method (FEM). Meanwhile, the suggested model is being used to examine the impacts of different types of oil on HOST. To test the effect of nanoparticles on heat transfer process, the insulation oil was changed with Nanofluids and hybrid nanofluids; For present work, can be concluded when add nanofluids (Al2O3, CuO, SiC) for oil of transformer under different concentration ratio (0.3,0.5,0.8,1,1.2,1.4 % wt) and add hybrid nanofluids (oil+ Al2O3+CuO), (oil+ Al2O3+SiC), (oil+ SiC +CuO) at different concentration ratio (1,1.2,1.4 % wt). The concentration of nanofluids show a direct influence on the temperature reduction for the studied cases. Finally it can be said, the proposed model was succeeded in simulating the distribution transformer, which is in good agreement with the experimental tests adopted for this work, and it could be used as a design tool with assist of COMSOL Multiphysics Package. The present model successfully accomplished for expecting the temperature distribution at any locations in the transformer when compared with practical measurement.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4016
Author(s):  
Krzysztof Walczak ◽  
Jaroslaw Gielniak

HV bushings are an important part of the equipment of large power transformers, responsible for their many serious (including catastrophic) failures. Their proper exploitation needs to apply correct and reliable diagnostics, e.g., the use of dielectric response methods, that take into account their specific construction and working conditions. In this article, based on laboratory tests carried out on a real bushing, it has been shown that the significant temperature distribution within its core significantly affects the shape of the dielectric response of its insulation; therefore, the approach to its modeling should be changed. Hence, a new method for interpreting the results, using the so-called the 2XY model, is proposed. Subsequently, based on the measurements made on the insulators in operation, a new modeling method was verified. In conclusion, it can be stated that the 2XY model significantly improves the reliability of the dielectric response analysis, which should be confirmed in the future by tests on withdrawn and revised insulators.


2019 ◽  
Vol 114 ◽  
pp. 04005
Author(s):  
Ngo Van Cuong ◽  
Lidiia I. Kovernikova

The parameters of electrical network modes often do not meet the requirements of Russian GOST 32144-2013 and the guidelines of Vietnam. In the actual operating conditions while there is the non-sinusoidal mode in electrical networks voltage and current harmonics are present. Harmonics result in overheating and damage of power transformers since they cause additional active power losses. Additional losses lead to the additional heat release, accelerating the process of insulating paper, transformer oil and magnetic structure deterioration consequently shortening the service life of a power transformer. In this regard there arises a need to develop certain scientific methods that would help demonstrate that low power quality, for instance could lead to a decrease in the electrical equipment service life. Currently we see a development of automated systems for continuous monitoring of power quality indices and mode parameters of electrical networks. These systems could be supplemented by characteristics calculating programs that give out a warning upon detection of the adverse influence of voltage and current harmonics on various electrical equipment of both electric power providers and electric power consumers. A software program presented in the article may be used to predict the influence of voltage and current harmonics on power transformers.


Author(s):  
Leila Choobineh ◽  
Dereje Agonafer ◽  
Ankur Jain

Heterogeneous integration in microelectronic systems using interposer technology has attracted significant research attention in the past few years. Interposer technology is based on stacking of several heterogeneous chips on a common carrier substrate, also referred to as the interposer. Compared to other technologies such as System-on-Chip (SoC) or System-in-Package (SiP), interposer-based integration offers several technological advantages. However, the thermal management of an interposer-based system is not well understood. The presence of multiple heat sources in various die and the interposer itself needs to be accounted for in any effective thermal model. While a finite-element based simulation may provide a reasonable temperature prediction tool, an analytical solution is highly desirable for understanding the fundamentals of the heat transfer process in interposers. In this paper, we describe our recent work on analytical modeling of heat transfer in interposer-based microelectronic systems. The basic governing energy conservation equations are solved to derive analytical expressions for the temperature distribution in an interposer-based microelectronic system. These solutions are combined with an iterative approach to provide the three-dimensional temperature field in an interposer. Results are in excellent agreement with finite-element solutions. The analytical model is utilized to study the effect of various parameters on the temperature field in an interposer system. Results from this work may be helpful in the thermal design of microelectronic systems containing interposers.


2017 ◽  
Vol 21 (2) ◽  
pp. 784-805 ◽  
Author(s):  
Edgars Labans ◽  
Kaspars Kalnins ◽  
Chiara Bisagni

A series of experimental tests have been carried out on three types of novel sandwich panels mainly designed for application in lightweight mobile housing. Two types of the panels are manufactured entirely from wood-based materials while the third one presents a combination of plywood for surfaces and corrugated thermoplastic composite as a core part. All sandwich panels are designed to allow rapid one-shot manufacturing. Mechanical performance has been evaluated in four-point bending comparing the data to the reference plywood board. Additionally, finite element simulations were performed to evaluate global behavior, stress distribution and provide the basis for a reliable design tool. Obtained results show sufficient mechanical characteristics suitable for floor and wall units. Compared to a solid plywood board, sandwich alternative can reach up to 42% higher specific stiffness, at the same time maintaining sufficient strength characteristics.


2018 ◽  
Vol 22 (2) ◽  
pp. 1149-1161 ◽  
Author(s):  
Maria Anish ◽  
Balakrishnan Kanimozh

The heat produced in the nuclear reactor due to fission reaction must be kept in control or else it will damage the components in the reactor core. Nuclear plants are using water for the operation dissipation of heat. Instead, some chemical substances which have higher heat transfer coefficient and high thermal conductivity. This experiment aims to find out how efficiently a nanofluid can dissipate heat from the reactor vault. The most commonly used nanofluid is Al2O3 nanoparticle with water or ethylene as base fluid. The Al2O3 has good thermal property and it is easily available. In addition, it can be stabilized in various PH levels. The nanofluid is fed into the reactor?s coolant circuit. The various temperature distribution leads to different characteristic curve that occurs on various valve condition leading to a detailed study on how temperature distribution carries throughout the cooling circuit. As a combination of Al2O3 as a nanoparticle and therminol 55 as base fluid are used for the heat transfer process. The Al2O3 nanoparticle is mixed in therminol 55 at 0.05 vol.% concentration. Numerical analysis on the reactor vault model was carried out by using ABAQUS and the experimental results were compared with numerical results.


2011 ◽  
Vol 128-129 ◽  
pp. 190-195
Author(s):  
Hua Lin Liu ◽  
Yin Bo Zhan ◽  
Xiao Lei ◽  
You Yuan Wang ◽  
Hua Rong Zeng ◽  
...  

As we know, the TF method is more sensitive to changes in the power transformers at higher frequencies. Although measurement based on low voltage impulse (LVI) is definitely faster than that based on swept frequency method (SFM), the available frequency band is narrow because of the typical microsecond impulse. In this paper, the characteristics of the nanosecond impulse in the frequency domain were investigated. A test System based on Nanosecond low voltage impulse was developed. The proposed method was applied to a 10kV/100kVA distribution transformer in the laboratory. Measurement results with two different impulses were compared.


Author(s):  
F. Gori ◽  
M. Borgia ◽  
A. Doro Altan

Experimental tests have been carried out to evaluate the heat transfer characteristics on an externally finned cylinder impinged by a jet flow of air. The cylinder is internally heated with an electric system. Thermocouples located inside the cylinder allow to evaluate the wall temperature distribution, in order to calculate the local and average convective heat transfer coefficients.


Author(s):  
Aline Figueiredo ◽  
Carina N. Sondermann ◽  
Rodrigo A. C. Patricio ◽  
Raphael Viggiano ◽  
Gustavo C. R. Bodstein ◽  
...  

In the oil industry liquid pipelines are very important for the transport of liquids, particularly in long offshore pipelines. The operation of these oil pipelines is susceptible to the occurrence of leaks in the system. Localizing a leak in a very long oil pipeline is an important piece of information that needs to be obtained before mitigating actions can be taken. These pipelines are usually subject to the temperature gradients that exist in the bottom of the ocean, and the resulting heat transfer process may lead to wax formation and deposition. The single-phase flow that occurs in this type of offshore pipeline that presents one leak point and suffers the effects of an external temperature gradient is numerically simulated in this paper. We consider a one-dimensional mathematical model that includes conservation equations of mass, momentum and energy, and its associated numerical method to calculate the transient liquid flow inside the pipeline. We are particularly interested in testing a leak localization model based upon the intersection of the hydraulic grade lines emanating from the pipeline ends under the influence of a non-zero temperature distribution. This paper proposes to compare the results for a non-isothermal flow with the corresponding isothermal flow to study the influence of the temperature distribution upon the leak localization strategy. The flow that develops along the entire pipeline, upstream and downstream of the leak, strongly affects the pressure gradient and has a significant influence on the location of the leak. Our numerical simulations show results that allow the model sensitivity to be studied by changing the leak magnitude, for a given leak position. From this analysis, we may observe how these parameters affect the pressure gradients along the pipeline that develop upstream and downstream of the leak and the model’s ability to predict the leak location.


2018 ◽  
Vol 58 ◽  
pp. 03012
Author(s):  
Lidiia Kovernikova ◽  
Ngo Van Cuong

The electrical equipment operation is cost-effective and reliable when operating parameters of the electrical network correspond to the rated data of the equipment. The real operation conditions, however, differ from those required for electrical equipment, which negatively affects its efficiency. The non-sinusoidal conditions in electrical networks are currently very common. The paper provides an overview of the characteristics obtained from an analysis of publications, which are used to evaluate the effect of the non-sinusoidal conditions on power transformers. The results of the calculation of these characteristics for a transformer installed at a railway traction substation are presented. Parameters of the non-sinusoidal conditions are obtained as a result of measurements.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Miao Tian ◽  
Jun Li

PurposeThe purpose of this study is to determine the effect of ventilation openings and fire intensity on heat transfer and fluid flow within the microclimate between 3D human body and clothing.Design/methodology/approachOn account of interaction effects of fire and ventilation openings on heat transfer process, a 3D transient computational fluid dynamics model considering the real shape of human body and clothing was developed. The model was validated by comparing heat flux history and distribution with experimental results. Heat transfer modes and fluid flow were investigated under three levels of fire intensity for the microclimate with ventilation openings and closures.FindingsTemperature distribution on skin surface with open microclimate was heavily depended on the heat transfer through ventilation openings. Higher temperature for the clothing with confined microclimate was affected by the position and direction of flames injection. The presence of openings contributed to the greater velocity at forearms, shanks and around neck, which enhanced the convective heat transfer within microclimate. Thermal radiation was the dominant heat transfer mode within the microclimate for garment with closures. On the contrary, convective heat transfer within microclimate for clothing with openings cannot be neglected.Practical implicationsThe findings provided fundamental supports for the ease and pattern design of the improved thermal protective systems, so as to realize the optimal thermal insulation of the microclimate on the garment level in the future.Originality/valueThe outcomes broaden the insights of results obtained from the mesoscale models. Different high skin temperature distribution and heat transfer modes caused by thermal environment and clothing structure provide basis for advanced thermal protective clothing design.


Sign in / Sign up

Export Citation Format

Share Document