scholarly journals Stability Analysis of Directional Tunnel in Sandy Soil

2021 ◽  
Vol 1197 (1) ◽  
pp. 012008
Author(s):  
R Raghavendra Kumar ◽  
Rajiv Gupta

Abstract In recent times, water storage is becoming a confronting task because of the depletion of water resources worldwide. Domestic rainwater harvesting and human-made structures for water procurement achieved significance because of the increase in intermittent water accessibility. In turn, functional water infrastructures fetch prominence in the wake of constructive coordination among the communities in a locality. Low water security and losses through evaporation observed by practising different rainwater harvesting methods create a research gap to construct water infrastructure in rural areas to procure water productively. The current research work represents the model of a water storage structure, named directional tunnel (DT), which is placed below the ground level in a declination, as it reduces evaporation and temperature, thus storing rainwater for longer days. DT stores runoff and rainwater collected from the rooftop of multiple houses in a selected locality. The detailed working of the DT is discussed using Building Information Modelling (BIM) concept. Combined with the engineering geological characteristics, the DT’s stability during water storage comes into the picture as the whole structure interacts with the soil. The current study also focuses on the behaviour of DT with respect to sandy soil using PLAXIS 3D software, and the results are interpreted for practical viability.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3226
Author(s):  
Jakub Jasiński ◽  
Mariusz Kozakiewicz ◽  
Maciej Sołtysik

The European Green Deal aims to make Europe the world’s first climate-neutral continent by 2050 by shifting to a clean circular economy, combating biodiversity loss and reducing pollution levels. In Poland, whose economy invariably remains one of the most dependent on coal consumption in Europe, institutional responses to the above EU objectives have taken the shape of energy cooperatives aimed at filling the gaps in the development of the civic dimension of energy on a local scale and the use of potential renewable energy sources in rural areas, including in relation to the agricultural sector. This article is a continuation of the authors’ previous research work, which has so far focused on the analysis of the development of profitability of Polish institutions that fit into the European idea of a “local energy community”, which includes energy cooperatives. In this research paper, they present the results of subsequent research work and analyses performed on the basis of it which, on the one hand, complement the previously developed optimization model with variables concerning actual energy storage and, on the other hand, analyze the profitability of the operation of energy cooperatives in the conditions of the “capacity market”. The latter was actually introduced in Poland at the beginning of 2021. The research took account of the characteristics of energy producers and consumers in rural areas of Poland, the legally defined rules for the operation of the capacity market and the institutional conditions for the operation of energy cooperatives that can use the potential of energy storage. A dedicated mathematical model in mixed integer programming technology was used, enriched with respect to previous research, making it possible to optimize the operation of energy cooperative with the use of actual energy storage (batteries). Conclusions from the research and simulation show that the installation of energy storage only partially minimizes the volume of energy drawn from the grid in periods when fees related to the capacity market are in force (which should be avoided due to higher costs for consumers). The analysis also indicates that a key challenge is the proper parameterization of energy storage.


2008 ◽  
Vol 8 (18) ◽  
pp. 5603-5614 ◽  
Author(s):  
S. L. Napelenok ◽  
R. W. Pinder ◽  
A. B. Gilliland ◽  
R. V. Martin

Abstract. An inverse modeling method was developed and tested for identifying possible biases in emission inventories using satellite observations. The relationships between emission inputs and modeled ambient concentrations were estimated using sensitivities calculated with the decoupled direct method in three dimensions (DDM-3D) implemented within the framework of the Community Multiscale Air Quality (CMAQ) regional model. As a case study to test the approach, the method was applied to regional ground-level NOx emissions in the southeastern United States as constrained by observations of NO2 column densities derived from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite instrument. A controlled "pseudodata" scenario with a known solution was used to establish that the methodology can achieve the correct solution, and the approach was then applied to a summer 2004 period where the satellite data are available. The results indicate that emissions biases differ in urban and rural areas of the southeast. The method suggested slight downward (less than 10%) adjustment to urban emissions, while rural region results were found to be highly sensitive to NOx processes in the upper troposphere. As such, the bias in the rural areas is likely not solely due to biases in the ground-level emissions. It was found that CMAQ was unable to predict the significant level of NO2 in the upper troposphere that was observed during the NASA Intercontinental Chemical Transport Experiment (INTEX) measurement campaign. The best correlation between satellite observations and modeled NO2 column densities, as well as comparison to ground-level observations of NO2, was obtained by performing the inverse while accounting for the significant presence of NO2 in the upper troposphere not captured by the regional model.


Author(s):  
Faissal Aziz ◽  
Mounir El Achaby ◽  
Naaila Ouazzani ◽  
Jauad El-Kharraz ◽  
Laila Mandi

Author(s):  
Arnab Banerjee

Abstract: COVID 19 has totally changed the way of life on Earth. India has been one of the worst affected nations in terms of infection also while harbouring a big chunk of population in the rural areas. It was imperative rural livelihood associated economic sustainability was to be severely affected but the exact extent of the disaster is yet to be known. As things are getting back to life in the new normal, researches regarding the same is under way, but it will be quite a few months or even years before the true picture can be ascertained and according mitigation strategies are adopted. Concrete data is still unavailable, even to some extent in the Government level. This review aims to understand how the pandemic played out on Rural Livelihood with the limited data available on the open platforms like social media and news media. It is tried to collect and comprehensively present the impeccable research work and efforts put in by the grassroot social workers and numerous journalists to collect news and information straight from the battleground, putting their lives to great risk in times of the pandemic. Keywords: Rural Livelihood; Vulnerability; COVID 19; MNREGA; Marginalisation


Author(s):  
K. A. Khan ◽  
Shahinul Islam ◽  
M. A. Saime ◽  
S. R. Rasel ◽  
Sazzad Hossain

A new method of electricity generation based on Pathor Kuchi Leaf (Genus: Kalanchoe, Section: Bryophyllum) has been developed at the Department of Physics, Jagannath University, Dhaka- 1100, Bangladesh. This electricity generation method has several advantages for smart grid over the conventional electricity production. This sustainable method is likely to generate the employment at particularly in the rural areas of where grid electricity is absent. This research work reports an invention made on Pathor Kuchi Leaf (PKL) electric power plant to enhance the PKL electricity production. The efficiency of the PKl electricity production device, Short Circuit Current ( Isc ), Open circuit Voltage ( Voc ), Temperature effect of the PKL malt, pH of the PKL malt, Titratable acidity of the PKL malt, Generation of PKL electricity, Storage system of the PKL electricity, Particular utilization of PKL electricity, I-V characteristics of the PKL, Classification of PKL, Longevity of PKL malt for PKL electricity generation, Preparation of PKL electric unit cell, module, panel, arrays and the constituent elements of the PKL, Voltage regulation, Internal resistance of the cell and efficiency of the cell have been studied. The chemical reactions of the PKL electrochemical cell have also been studied. In experimental study, it is shown that the maximum efficiency of the PKL electricity production device is ≈ 34%, the pH of the PKL malt is ≈ 4.6(without water), pH of the PKL malt is ≈ 4.8 (with 10% solution), the titratable acidity of the PKL malt is ≈ 0.88%. Most of the results have been tabulated and graphically discussed.


2009 ◽  
Vol 60 (8) ◽  
pp. 730 ◽  
Author(s):  
P. R. Ward ◽  
K. Whisson ◽  
S. F. Micin ◽  
D. Zeelenberg ◽  
S. P. Milroy

In Mediterranean-type climates, dryland soil water storage and evaporation during the hot and dry summer are poorly understood, particularly for sandy-textured soils. Continued evaporation during summer, and any effects of crop stubble management, could have a significant impact on annual components of the water balance and crop yield. In this research, the effect of wheat stubble management on summer evaporation and soil water storage was investigated for a sandy soil in south-western Australia, during the summers of 2005–06 and 2006–07. Treatments comprised: retained standing stubble; retained flattened stubble; removed stubble; and removed stubble followed by burying the crowns with topsoil from an adjacent area. Under ‘dry’ conditions, evaporation continued at ~0.2 mm/day. In contrast to previous results for finer textured soil types, stubble retention did not decrease the rate of evaporation, but marginally (10–30%) increased evaporation on 7 out of 14 days when measurements were taken. Significant differences due to stubble management were observed in two successive summers, but only for relatively dry soil conditions. There were no significant differences observed for several days after irrigation or rainfall. Under dry conditions in the absence of rainfall, total decrease in water storage during a 90-day summer period could be ~20 mm, but differences attributable to stubble management are likely to be a few mm.


2021 ◽  
Author(s):  
Henrik Virta ◽  
Anu-Maija Sundström ◽  
Iolanda Ialongo ◽  
Johanna Tamminen

<p>We present the results of two projects completed for the Finnish Ministry of the Environment that assessed the capability of satellites in supporting traditional in situ air quality (AQ) measurements. These projects analysed the correlation of co-located NO<sub>2</sub> measurements from the TROPOspheric Monitoring Instrument (TROPOMI, measuring in molec./cm<sup>2</sup>) and traditional air quality stations (measuring in µg/m<sup>3</sup>) in Finland and Europe in 2018 and 2019, and used the results to estimate annual mean ground-level NO<sub>2</sub> concentrations in Finland’s 14 different AQ monitoring regions.</p><p>We find that the correlation is dependent on the location of the AQ station, with city stations having a higher correlation than rural background stations. This is expected, as the variability of NO<sub>2</sub> levels in Finnish rural areas is usually within TROPOMI’s random measurement error. We also find that the estimated annual mean regional ground level NO<sub>2</sub> concentrations compare well to the in situ measurements, as the associated uncertainties provide reliable upper estimates for ground level concentrations. These estimates were used to establish that annual NO<sub>2</sub> concentrations were below the EU limit in two AQ monitoring regions with no active ground stations.</p><p>We also analyse TROPOMI’s and the Ozone Monitoring Instrument’s (OMI) ability to study the spatial distribution of NO<sub>2</sub> over Finland using gridded maps. Oversampled TROPOMI measurements are able to distinguish relatively small sources such as roads, airports and refineries, and the difference in concentrations between weekdays and weekends. TROPOMI is also able to detect emissions from different sources of NO<sub>2</sub> such as cities, mining sites and industrial areas. Long time series measurements from OMI show decreasing NO<sub>2</sub> levels over Finland between 2005 and 2018.</p><p>The studies were conducted on behalf of the Finnish Ministry of the Environment, and showcase how satellite measurements can be used to supplement traditional air quality measurements in areas with poor ground station coverage. Launched in 2017, TROPOMI is currently the highest-resolution air quality sensing satellite, and its societal uses are only beginning to be realised. Future Sentinel missions, especially the geosynchronous Sentinel-4, will further extend satellite air quality monitoring capabilities and enable continuous daytime observations in cloud-free conditions.</p>


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Apeesada Sompolgrunk ◽  
Saeed Banihashemi ◽  
Saeed Reza Mohandes

Purpose The purpose of this study is to identify and analyse the key measurable returning factors, value drivers and strategic benefits associated with building information modelling (BIM) return on investment (ROI). The findings of this study provide researchers and practitioners with up-to-date information in formulating appropriate strategies to quantify the monetary value of BIM. The suggested research agenda provided would also advance what is presently a limited body of knowledge relating to the evaluation of BIM ROI. Design/methodology/approach To fill the identified gap, this study develops a comprehensive systematic review of mainstream studies on factors affecting BIM ROI published from 2000 to 2020. A total of 23 academic records from different sources such as journals, conference proceedings, dissertation and PhD theses were identified and thoroughly reviewed. Findings The reported BIM ROI ranged greatly from −83.3% to 39,900%. A total of 5 returning factors, namely, schedule reduction and compliance, productivity improvement, request for information reduction, rework reduction and change orders reduction were identified as the most commonly reported factors that influence BIM ROI. Four quantification techniques including general assumptions-based theoretical model, perceived BIM ROI based on survey, factors affecting BIM ROI with no reported ROI and quantified BIM ROI based on a case study were observed and pointed out in the review, together with their limitations. Finally, three major gaps were raised as the lack of consideration on the likelihood of BIM assisting in a construction project, intangible returning factors influencing BIM-based projects and industry standards in benchmarking BIM ROI. Practical implications The outcomes of this study would assist practitioners by providing the current evaluation techniques that address the limitations with BIM investment and present issues relating to the economic evaluation of BIM in the construction industry. It is also expected that presenting a deeper and wider perspective of the research work performed until now will direct a more focussed approach on productivity improvement efforts in the construction industry. Originality/value This study identifies and analyses the key measurable returning factors, value drivers and strategic benefits associated with BIM ROI on an industry scale rather than a particular organisation or a project scale.


Sign in / Sign up

Export Citation Format

Share Document