scholarly journals Valorization of potato peel residues to produce a bioflocculant to be used in the treatment of liquid effluents

2021 ◽  
Vol 1204 (1) ◽  
pp. 012002
Author(s):  
Fatima Zohra Choumane ◽  
Fatiha Zaoui ◽  
Fatma Kandouci ◽  
Bouhana Maachou ◽  
Belkacem Benguella

Abstract The present study aims primarily to investigate the flocculation capacity of a novel potato peel-based bioflocculant in wastewater treatment. The analysis of wastewater revealed high COD and BOD5 contents that could respectively reach the values 529.08 mg O2/l and 317.03 mg O2/l. In addition, the effect of experimental parameters such as the pH, coagulant/flocculant dosage, and contact time, was studied using the coagulation-flocculation treatment technique. The experiments were carried out with a lab-scale jar-test apparatus where aluminum chloride (AlCl3) was used as a coagulant agent. It should be noted that the optimal dose of AlCl3 was equal to 0.6 g at 10 mn, with turbidity reduction of 99.01%. Moreover, the flocculation tests showed higher turbidity removal (98%), for a flocculant dosage of 0.2g. The results obtained in this study indicated that using the natural potato peel-based flocculant, in the presence of a coagulant, provides an effective and environmentally friendly coagulation option for wastewater treatment.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kahina Bouhadjra ◽  
Wahiba Lemlikchi ◽  
Azedine Ferhati ◽  
Samuel Mignard

AbstractIn the present study, the potato peel waste (PP) was used for the removal of the anionic dye Cibacron Blue P3R from an aqueous solution, activated with phosphoric acid (PPa) and calcined at 800 °C (PPc). The materials were characterized by Scanning Electron Microscope, Energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy. The effects of various experimental parameters (pH, dye concentration, contact time) were also studied. The experimental results have shown that PPc has a greater capacity compared to pp and ppa. The capacity of PP bio-char (PPc) is 270.3 mg g−1 compared to PP (100 mg g−1) and PPa (125 mg g−1). Equilibrium experiments at 180 min for all materials were carried out at optimum pH (2.2): 76.41, 88.6 and 94% for PP, PPa and PPc respectively; and the Langmuir models agreed very well with experimental data. The ability of sorbent for the sorption of CB dye follows this order: calcined > activated > native materials. Potato peel biochar (PPc) can be considered a promising adsorbent for removing persistent dyes from water.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Vara Saritha ◽  
Manoj Kumar Karnena ◽  
Bhavya Kavitha Dwarapureddi

AbstractOwing to the advantages of the natural coagulants under study, the present objective is to study the efficiency of blended coagulants: alum and chitin; alum and sago; and alum + chitin + sago. In this attempt, we have reduced the quantity of alum dose and added increasing quantities of the natural coagulants. The surface water samples collected from nearby sources were analyzed for the following parameters pre- and post-treatment with the coagulants. Coagulation and flocculation experiments were carried out using conventional jar test apparatus. Turbidity removal was observed to be nearly 99.29% at all pH ranges and doses. Removal of conductivity, solids and hardness was 58.83%, 32.03% and 33.33%, respectively. From the results obtained, it can be observed that the efficiency of blended coagulants in removal of various physicochemical parameters from the waters was better when compared to individual coagulants. The floc size in blend coagulants was larger than that of single coagulants. The data obtained in this study indicated the coagulation efficiency could be enhanced by using the blend coagulant.


1975 ◽  
Vol 10 (1) ◽  
pp. 17-27
Author(s):  
J.J. Bancsi ◽  
A. Benedek

Abstract This paper presents fundamental data on the settling of the iron phosphate precipitate in the presence and the absence of polyelectrolytes. Supernatant “equilibrium” phosphorus concentrations are also examined. Tests were conducted with model phosphate solutions in a modified jar test apparatus. The results show that adequate phosphorus removal (greater than 90%) required a minimum molar iron to phosphorus ratio of 1.5. The settling rate of iron phosphate flocs is such that complete settling in clarifiers operated at overflow rates of 600-800 igpd/ft2 cannot be ensured. The addition of a polyelectrolyte increases settling rate at least 5 fold. Phosphorus removal was less effective in the presence of condensed phosphates. Both ultimate phosphorus removal and settling rates were adversely affected by the presence of SO4= ions. An equation is developed to predict the maximum permissible iron dosage for a given initial solution alkalinity.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Mutiu Kolade Amosa ◽  
Fatai A. Aderibigbe ◽  
Adewale George Adeniyi ◽  
Joshua O. Ighalo ◽  
Bisola Taibat Bello ◽  
...  

AbstractThe performance of factorial designs is still limited due to some uncertainties that usually intensify process complexities, hence, the need for inter-platform auto-correlation analyses. In this study, the auto-correlation capabilities of factorial designs and General Algebraic Modeling System (GAMS) on the effects of some pertinent operating variables in wastewater treatment were compared. Individual and combined models were implemented in GAMS and solved with the trio of BARON, CPLEX and IPOPT solvers. It is revealed that adsorbent dosage had the highest effect on the process. It contributed the most effect toward obtaining the minimum silica and TDS contents of 13 mg/L and 814 mg/L, and 13.6 mg/L and 815 mg/L from factorial design and GAMS platforms, respectively. This indicates a concurrence between the results from the two platforms with percentage errors of 4.4% and 0.2% for silica and TDS, respectively. The effects of the mixing speed and contact time are negligible.


2013 ◽  
Vol 64 (1) ◽  
Author(s):  
Norzita Ngadi ◽  
Nor Aida Yusoff

The study investigated the performance of chitosan and extracted pandan leaves towards treatment of textile wastewater by using flocculation process. Pandan leaves were extracted by using solvent extraction method. Flocculation process was conducted using a Jar test experiment. The effect of dosage, pH, and settling time on reduction of COD, turbidity and color of textile wastewater was studied. The results obtained found that chitosan was very effective for reduction of COD, turbidity, color and indicator for color. The best condition for COD and turbidity removal was achieved at 0.2 g dosage, pH 4 and 60 minutes of settling time. Under this condition, about 58 and 99% of COD and turbidity was removed, respectively. However, the results obtained using extracted pandan was opposite compared to the chitosan. Extracted pandan was not able to remove both COD and turbidity of the waste. 


2018 ◽  
Vol 15 (30) ◽  
pp. 489-497
Author(s):  
J. T. B. SILVA ◽  
K. C. ROCHA ◽  
R. M. F. CUBA

With the progress in the agriculture sector, improper domains of pesticides, herbicides, and insecticides have grown, which have been negatively affected the environment until the present day. Therefore, the present work has as objective to evaluate the efficiency of the natural coagulant Tanfloc in the clarification stage with respect the herbicide glyphosate removal and the turbidity parameter by using jar test with different pH conditions and coagulant concentration. As a result, was obtained that for the pH range of 5-5.5 the natural coagulant has shown more efficient, with a glyphosate percentage removal of approximately 98.0% using low concentrations and turbidity removal of 21.69%. On the other hand, for the pH range of 6.8 to 7.3, the coagulant has not shown profitable results, considering that, for some concentrations, it was not possible to detect the herbicide removal. In the concentrations that were detected removal, the average glyphosate percentage removal was approximately 89% and an average of 20.24% of turbidity removal. In summary, although the natural coagulant has not shown remarkably efficient in the neutral pH range, the product may be considered an alternative device in water treatment with the respect of the use of metallic coagulants, which produce sludge with chemistry characteristics that may negatively affect the environment.


2012 ◽  
Vol 9 (1) ◽  
pp. 153-159 ◽  
Author(s):  
Baghdad Science Journal

Equilibrium adsorption isotherm for the removal of trifluralin from aqueous solutions using ? –alumina clay has been studied. The result shows that the isotherms were S3 according Giels classification. The effects of various experimental parameters such as contact time, adsorbent dosage, effect of pH and temperature of trifluralin on the adsorption capacities have been investigated. The adsorption isotherms were obtained by obeying freundlich adsorption isotherm with (R2 = 0.91249-0.8149). The thermodynamic parameters have been calculated by using the adsorption process at five different temperature, the values of ?H, ?G and ?S were (_1.0625) kj. mol-1, (7.628 - 7.831) kj.mol-1 and (_2.7966 - _2.9162) kg. k-1. mol-1 respectively. The kinetic study of adsorption process has been studied depending on three kinetic equations: 1- Allergen equation 2- Morris –weber eguation 3- Reichenberg eguation. In general, the result shows the isotherm were on ?- alumina according to Giels classification.? –alumina and thermodynamic


2021 ◽  
Vol 37 (1) ◽  
pp. 65-70
Author(s):  
Aram Dokht Khatibi ◽  
Kethineni Chandrika ◽  
Ferdos Kord Mostafapour ◽  
Ali Akbar Sajadi ◽  
Davoud Balarak

Conventional wastewater treatment is not able to effectively remove Aromatic hydrocarbons such as Naphthalene, so it is important to remove the remaining antibiotics from the environment. The aim of this study was to evaluate the efficiency of UV/ZnOphotocatalytic process in removing naphthalene antibiotics from aqueous solutions.This was an experimental-applied study that was performed in a batch system on a laboratory scale. The variables studied in this study include the initial pH of the solution, the dose of ZnO, reaction time and initial concentration of Naphthalene were examined. The amount of naphthalene in the samples was measured using GC.The results showed that by decreasing the pH and decreasing the initial concentration of naphthalene and increasing the contact time, the efficiency of the process was developed. However, an increase in the dose of nanoparticles to 0.8 g/L had enhance the efficiency of the process was enhanced, while increasing its amount to values higher than 0.8 g/L has been associated with a decrease in removal efficiency.The results of this study showed that the use of UV/ZnOphotocatalytic process can be addressed as a well-organized method to remove naphthalene from aqueous solutions.


2021 ◽  
Vol 9 (01) ◽  
pp. 512-524
Author(s):  
Konan Lopez Kouame ◽  
◽  
Nogbou Emmanuel Assidjo ◽  
Andre Kone Ariban ◽  
◽  
...  

This article presents an optimization of the drinking water treatment process at the SUCRIVOIRE treatment station. The objective is to optimize the coagulation and flocculation process (fundamental process of the treatment of said plant)by determining the optimal dosages of the products injected and then proposes a program for calculating the optimal dose of coagulant in order to automatically determine the optimal dose of the latter according to the raw water quality. This contribution has the advantage of saving the user from any calculations the latter simply enters the characteristics of the raw effluent using the physical interface of the program in order to obtain the optimum corresponding coagulant concentration. For the determination of the optimal coagulant doses, we performed Jar-Test flocculation tests in the laboratory over a period of three months. The results made it possible to set up a polynomial regression model of the optimal dose of alumina sulfate as a function of the raw water parameters. A program for calculating the optimal dose of coagulant was carried out on Visual Basic. The optimal doses of coagulant obtained vary from 25, 35, 40 and 45 mg/l depending on the characteristics of the raw effluent. The model obtained is: . Finally, verification tests were carried out using this model on the process. The results obtained meet the WHO drinkability standards for all parameters for a settling time of two hours.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Devagi Kanakaraju ◽  
Soon Pang Wong

The objective of this study was to assess the efficiency of a novel TiO2/modified sago bark (TiO2/MSB) mixture for the degradation of sago wastewater effluent by employing response surface methodology (RSM) using chemical oxygen demand (COD) removal as the target parameter. The highest COD removal of 64.92% was obtained using TiO2/MSB mixture sample prepared by combining 0.2 g/L TiO2and 1 w/w% MSB. Given that the highest removal was produced using this mixture sample, further optimisation of sago wastewater treatment was conducted by varying the independent variables, namely, dosage and contact time. Under this optimum condition, 0.10 g of 0.2 g/L TiO2/1% MSB had successfully reduced 52.83% COD in 120 min. Surface morphology, functional groups, and elemental analysis supported observations of the ability of TiO2/MSB mixture to remove COD. Additionally, aeration had further improved COD removal by 11%. The regression value (R2>0.99) of the model indicated a high degree of correlation between the evaluated parameters. These results proved the feasibility of TiO2photocatalysis as an appealing alternative protocol for sago wastewater treatment and solid waste from the industry can be utilised for wastewater degradation.


Sign in / Sign up

Export Citation Format

Share Document