scholarly journals System solution to improve energy efficiency of HVAC systems

Author(s):  
L Chretien ◽  
R Becerra ◽  
N P Salts ◽  
E A Groll
2003 ◽  
Vol 125 (3) ◽  
pp. 324-330 ◽  
Author(s):  
Jin Wen ◽  
Theodore F. Smith

Improving the energy efficiency of buildings by examining their heating, ventilating, and air-conditioning (HVAC) systems represents an opportunity. To improve energy efficiency, to increase occupant comfort, and to provide better system operation and control algorithms for these systems, online estimation of system parameters, including system thermophysical parameters and thermal loads, is desirable. Several reported studies have presented simulation results and assumed that the thermal loads are known. A difficulty in HVAC system parameter estimation is that most HVAC systems are nonlinear, have multiple and time varying parameters, and require an estimate of the thermal loads for a building zone. In this study, building zones and variable-air-volume units are modeled. The system parameters including the thermal loads are estimated using the recursive-least-squares method with a variable forgetting factor. The sensitivity of the estimation results to different factors is examined. The estimated parameters are used to predict the zone and variable-air-volume-discharge-air temperatures. Several experiments are used to validate the prediction results. The comparisons show good agreement between the experiments and the prediction results.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Eric Kwame Simpeh ◽  
Jon-Patrick George Pillay ◽  
Ruben Ndihokubwayo ◽  
Dorothy Julian Nalumu

PurposeHeating, ventilation and air-conditioning (HVAC) systems account for approximately half of all energy usage in the operational phase of a building's lifecycle. The disproportionate amount of energy usage in HVAC systems against other utilities within buildings has proved a huge cause for alarm, as this practice contributes significantly to global warming and climate change. This paper reviews the status and current trends of energy consumption associated with HVAC systems with the aim of interrogating energy efficiency practices for improving HVAC systems' consumption in buildings in the context of developing countries.Design/methodology/approachThe study relied predominantly on secondary data by analysing the relevant body of literature and proposing conceptual insights regarding best practices for improving the energy efficiency of HVAC systems in buildings. The systematic review of the literature (SLR) was aided by the PRISMA guiding principle. Content analysis technique was adopted to examine germane scholarly articles and finally grouped them into themes.FindingsBased on the SLR, measures for enhancing the energy efficiency of HVAC systems in buildings were classified based on economic considerations ranging from low-cost measures such as the cost of tuning the system, installing zonal control systems, adopting building integrated greenery systems and passive solar designs to major approaches such as HVAC smart technologies for energy management which have multi-year pay-back periods. Further, it was established that practices to improve energy efficiency in buildings range from integrated greening system into buildings to HVAC system which are human-centred and controlled to meet human modalities.Practical implicationsThere is a need to incorporate these energy efficiency practices into building regulations or codes so that built environment professionals would have a framework within which to design their buildings to be energy efficient. This energy efficient solution may serve as a prerequisite for newly constructed buildings.Originality/valueTo this end, the authors develop an integrated optimization conceptual framework mimicking energy efficiency options that may complement HVAC systems operations in buildings.


Procedia CIRP ◽  
2021 ◽  
Vol 104 ◽  
pp. 482-487
Author(s):  
Marcus Vogt ◽  
Jan Schlichter ◽  
Franziska Aschersleben ◽  
Tim Abraham ◽  
Lars Wolf ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1584
Author(s):  
Roberto Araya ◽  
Pedro Collanqui

Education is critical for improving energy efficiency and reducing CO2 concentration, but collaboration between countries is also critical. It is a global problem in which we cannot isolate ourselves. Our students must learn to collaborate in seeking solutions together with others from other countries. Thus, the research question of this study is whether interactive cross-border science classes with energy experiments are feasible and can increase awareness of energy efficiency among middle school students. We designed and tested an interactive cross-border class between Chilean and Peruvian eighth-grade classes. The classes were synchronously connected and all students did experiments and answered open-ended questions on an online platform. Some of the questions were designed to check conceptual understanding whereas others asked for suggestions of how to develop their economies while keeping CO2 air concentration at acceptable levels. In real time, the teacher reviewed the students’ written answers and the concept maps that were automatically generated based on their responses. Students peer-reviewed their classmates’ suggestions. This is part of an Asia-Pacific Economic Cooperation (APEC) Science Technology Engineering Mathematics (STEM) education project on energy efficiency using APEC databases. We found high levels of student engagement, where students discussed not only the cross-cutting nature of energy, but also its relation to socioeconomic development and CO2 emissions, and the need to work together to improve energy efficiency. In conclusion, interactive cross-border science classes are a feasible educational alternative, with potential as a scalable public policy strategy for improving awareness of energy efficiency among the population.


2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Fan Yang ◽  
Kotaro Tadano ◽  
Gangyan Li ◽  
Toshiharu Kagawa

Factories are increasingly reducing their air supply pressures in order to save energy. Hence, there is a growing demand for pneumatic booster valves to overcome the local pressure deficits in modern pneumatic systems. To further improve energy efficiency, a new type of booster valve with energy recovery (BVER) is proposed. The BVER principle is presented in detail, and a dimensionless mathematical model is established based on flow rate, gas state, and energy conservation. The mathematics model was transformed into a dimensionless model by accurately selecting the reference values. Subsequently the dimensionless characteristics of BVER were found. BVER energy efficiency is calculated based on air power. The boost ratio is found to be mainly affected by the operational parameters. Among the structural ones, the recovery/boost chamber area ratio and the sonic conductance of the chambers are the most influential. The boost ratio improves by 15%–25% compared to that of a booster valve without an energy recovery chamber. The efficiency increases by 5%–10% depending on the supply pressure. A mathematical model is validated by experiment, and this research provides a reference for booster valve optimisation and energy saving.


2021 ◽  
Vol 13 (7) ◽  
pp. 3810
Author(s):  
Alessandra Cantini ◽  
Leonardo Leoni ◽  
Filippo De Carlo ◽  
Marcello Salvio ◽  
Chiara Martini ◽  
...  

The cement industry is highly energy-intensive, consuming approximately 7% of global industrial energy consumption each year. Improving production technology is a good strategy to reduce the energy needs of a cement plant. The market offers a wide variety of alternative solutions; besides, the literature already provides reviews of opportunities to improve energy efficiency in a cement plant. However, the technology is constantly developing, so the available alternatives may change within a few years. To keep the knowledge updated, investigating the current attractiveness of each solution is pivotal to analyze real companies. This article aims at describing the recent application in the Italian cement industry and the future perspectives of technologies. A sample of plant was investigated through the analysis of mandatory energy audit considering the type of interventions they have recently implemented, or they intend to implement. The outcome is a descriptive analysis, useful for companies willing to improve their sustainability. Results prove that solutions to reduce the energy consumption of auxiliary systems such as compressors, engines, and pumps are currently the most attractive opportunities. Moreover, the results prove that consulting sector experts enables the collection of updated ideas for improving technologies, thus giving valuable inputs to the scientific research.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 537
Author(s):  
Mohammad Baniata ◽  
Haftu Tasew Reda ◽  
Naveen Chilamkurti ◽  
Alsharif Abuadbba

One of the major concerns in wireless sensor networks (WSNs) is most of the sensor nodes are powered through limited lifetime of energy-constrained batteries, which majorly affects the performance, quality, and lifetime of the network. Therefore, diverse clustering methods are proposed to improve energy efficiency of the WSNs. In the meantime, fifth-generation (5G) communications require that several Internet of Things (IoT) applications need to adopt the use of multiple-input multiple-output (MIMO) antenna systems to provide an improved capacity over multi-path channel environment. In this paper, we study a clustering technique for MIMO-based IoT communication systems to achieve energy efficiency. In particular, a novel MIMO-based energy-efficient unequal hybrid clustering (MIMO-HC) protocol is proposed for applications on the IoT in the 5G environment and beyond. Experimental analysis is conducted to assess the effectiveness of the suggested MIMO-HC protocol and compared with existing state-of-the-art research. The proposed MIMO-HC scheme achieves less energy consumption and better network lifetime compared to existing techniques. Specifically, the proposed MIMO-HC improves the network lifetime by approximately 3× as long as the first node and the final node dies as compared with the existing protocol. Moreover, the energy that cluster heads consume on the proposed MIMO-HC is 40% less than that expended in the existing protocol.


2021 ◽  
pp. 163-174
Author(s):  
Levente Klein ◽  
Sergio Bermudez ◽  
Fernando Marianno ◽  
Hendrik Hamann

Sign in / Sign up

Export Citation Format

Share Document