Dissipative flow of hybrid nanomaterial with entropy optimization

2019 ◽  
Vol 6 (8) ◽  
pp. 085003 ◽  
Author(s):  
M Ijaz Khan ◽  
M Waleed Ahmad Khan ◽  
T Hayat ◽  
A Alsaedi
2020 ◽  
Vol 184 ◽  
pp. 105130 ◽  
Author(s):  
Sumaira Qayyum ◽  
Tasawar Hayat ◽  
Mehreen Kanwal ◽  
Ahmed Alsaedi ◽  
M. Ijaz Khan

2020 ◽  
Vol 34 (20) ◽  
pp. 2050193 ◽  
Author(s):  
M. Waqas ◽  
M. Ijaz Khan ◽  
Faris Alzahrani ◽  
Aatef Hobiny

Entropy optimization or entropy plays vital roles in our understanding of numerous various diverse phenomena running from cosmology to science. Their significance is shown in regions of immediate practical interest like provision of global energy as well as in others of a progressively essential flavor, such as the source of order and unpredictability in nature. The purpose of this communication is to investigate some of ongoing and significant outcomes in a way that not only appeals to the entropy expert but also makes them available to the nonexpert looking for an outline of the field. This communication addresses the entropy optimized flow of hybrid nanofluid between two plates accounting Darcy–Forchheimer porous medium. Energy equation is developed through implementation of first law of thermodynamics subject to radiative flux, dissipation and Joule heating. MHD fluid is rotating with angular frequency [Formula: see text]. Total entropy rate obtained is subject to thermal irreversibility, friction or dissipation irreversibility, magnetic or Joule heating irreversibility and Darcy–Forchheimer irreversibility via second law of thermodynamics. The nonlinear ordinary system (differential equations) is tackled via homotopy method for series solutions. Behaviors of sundry variables on the velocity, skin friction, temperature, Nusselt number and entropy generation rate are discussed and presented through various plots. Schematic flow diagram is presented. Furthermore, skin friction (drag force) and Nusselt number are discussed numerically. Obtained results analyzed that the entropy rate increases subject to higher radiation parameter and Hartmann and Brinkman numbers.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tasawar Hayat ◽  
Ikram Ullah ◽  
Ahmad Alsaedi ◽  
Shaher Momani

Abstract Our intention in this article is to investigate entropy optimization in nonlinear mixed convective unsteady magnetohydrodynamic flow of nanomaterials in porous space. An exponentially stretched sheet creates the liquid flow. Nanomaterial is considered electrically conducting. The concentration and energy expressions comprise viscous dissipation, Joule heating, thermophoresis and Brownian motion aspects. Arrhenius activation energy is considered. Computation of entropy generation based upon the second law of thermodynamics is made. Nonlinear partial expressions are obtained via suitable dimensionless variables. Resultant expressions are tackled by the OHAM technique. Features of numerous variables on entropy, temperature, velocity and concentration are graphically visualized. Skin friction and the temperature gradient at the surface are also elaborated. Comparative analysis is deliberated in tabulated form to validate the previously published outcomes. Velocity is reduced significantly via the suction parameter. The entropy rate increases for higher values of Brinkman, Biot and Hartmann numbers.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 98
Author(s):  
Carla L. Vidal ◽  
Izabela Ferreira ◽  
Paulo S. Ferreira ◽  
Mariana L. C. Valente ◽  
Ana B. V. Teixeira ◽  
...  

Biofilm formation on biomaterials is a challenge in the health area. Antimicrobial substances based on nanomaterials have been proposed to solve this problem. The aim was to incorporate nanostructured silver vanadate decorated with silver nanoparticles (β-AgVO3) into dental porcelains (IPS Inline and Ex-3 Noritake), at concentrations of 2.5% and 5%, and evaluate the surface characteristics (by SEM/EDS), antimicrobial activity (against Streptococcus mutans, Streptococcus sobrinus, Aggregatibacter actinomycetemcomitans, and Pseudomonas aeruginosa), silver (Ag+) and vanadium (V4+/V5+) ions release, and mechanical properties (microhardness, roughness, and fracture toughness). The β-AgVO3 incorporation did not alter the porcelain’s components, reduced the S. mutans, S. sobrinus and A. actinomycetemcomitans viability, increased the fracture toughness of IPS Inline, the roughness for all groups, and did not affect the microhardness of the 5% group. Among all groups, IPS Inline 5% released more Ag+, and Ex-3 Noritake 2.5% released more V4+/V5+. It was concluded that the incorporation of β-AgVO3 into dental porcelains promoted antimicrobial activity against S. mutans, S. sobrinus, and A. actinomycetemcomitans (preventing biofilm formation), caused a higher release of vanadium than silver ions, and an adequate mechanical behavior was observed. However, the incorporation of β-AgVO3 did not reduce P. aeruginosa viability and increased the surface roughness of dental porcelains.


Langmuir ◽  
2021 ◽  
Vol 37 (5) ◽  
pp. 1925-1931
Author(s):  
Samaneh Shahsavarifar ◽  
Majid Masteri-Farahani ◽  
Mohammad Reza Ganjali

Author(s):  
Tong Zhang ◽  
Hongwei Chu ◽  
Dong Li ◽  
Ying Li ◽  
Shengzhi Zhao ◽  
...  

In the present work, we synthesize a Fe3O4@Ti3C2 MXene hybrid nanomaterial. Comprehensive investigation on the morphology and structure of the prepared Fe3O4@Ti3C2 MXene demonstrates the strong interaction between Ti3C2 MXene...


Sign in / Sign up

Export Citation Format

Share Document