scholarly journals Strong anharmonicity in pristine graphene

2018 ◽  
Vol 2 (9) ◽  
pp. 095013
Author(s):  
J N Teixeira Rabelo ◽  
Ladir Cândido
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Malgorzata Skorupska ◽  
Anna Ilnicka ◽  
Jerzy P. Lukaszewicz

AbstractThe synthesis of metal-free but electrochemically active electrode materials, which could be an important contributor to environmental protection, is the key motivation for this research approach. The progress of graphene material science in recent decades has contributed to the further development of nanotechnology and material engineering. Due to the unique properties of graphene materials, they have found many practical applications: among others, as catalysts in metal-air batteries, supercapacitors, or fuel cells. In order to create an economical and efficient material for energy production and storage applications, researchers focused on the introduction of additional heteroatoms to the graphene structure. As solutions for functionalizing pristine graphene structures are very difficult to implement, this article presents a facile method of preparing nitrogen-doped graphene foam in a microwave reactor. The influence of solvent type and microwave reactor holding time was investigated. To characterize the elemental content and structural properties of the obtained N-doped graphene materials, methods such as elemental analysis, high-resolution transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy were used. Electrochemical activity in ORR of the obtained materials was tested using cyclic voltamperometry (CV) and linear sweep voltamperometry (LSV). The tests proved the materials’ high activity towards ORR, with the number of electrons reaching 3.46 for tested non-Pt materials, while the analogous value for the C-Pt (20 wt% loading) reference was 4.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 560
Author(s):  
Alexandra Carvalho ◽  
Mariana C. F. Costa ◽  
Valeria S. Marangoni ◽  
Pei Rou Ng ◽  
Thi Le Hang Nguyen ◽  
...  

We show that the degree of oxidation of graphene oxide (GO) can be obtained by using a combination of state-of-the-art ab initio computational modeling and X-ray photoemission spectroscopy (XPS). We show that the shift of the XPS C1s peak relative to pristine graphene, ΔEC1s, can be described with high accuracy by ΔEC1s=A(cO−cl)2+E0, where c0 is the oxygen concentration, A=52.3 eV, cl=0.122, and E0=1.22 eV. Our results demonstrate a precise determination of the oxygen content of GO samples.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2830
Author(s):  
Farzaneh Farivar ◽  
Pei Lay Yap ◽  
Tran Thanh Tung ◽  
Dusan Losic

Functionalization of pristine graphene to achieve high water dispersibility remains as a key obstacle owing to the high hydrophobicity and absence of reactive functional groups on the graphene surface. Herein, a green and simple modification approach to prepare highly dispersible functionalized graphene via thermal thiol-ene click reaction was successfully demonstrated on pristine graphene. Specific chemical functionalities (–COO, –NH2 and –S) on the thiol precursor (L-cysteine ethyl ester) were clicked directly on the sp2 carbon of graphene framework with grafting density of 1 unit L-cysteine per 113 carbon atoms on graphene. This functionalized graphene was confirmed with high atomic content of S (4.79 at % S) as well as the presence of C–S–C and N–H species on the L-cysteine functionalized graphene (FG-CYS). Raman spectroscopy evidently corroborated the modification of graphene to FG-CYS with an increased intensity ratio of D and G band, ID/IG ratio (0.3 to 0.7), full-width at half-maximum of G band, FWHM [G] (20.3 to 35.5) and FWHM [2D] (64.8 to 90.1). The use of ethanol as the reaction solvent instead of common organic solvents minimizes the chemical hazards exposure to humans and the environment. This direct attachment of multifunctional groups on the surface of pristine graphene is highly demanded for graphene ink formulations, coatings, adsorbents, sensors and supercapacitor applications.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jonathan H. Gosling ◽  
Oleg Makarovsky ◽  
Feiran Wang ◽  
Nathan D. Cottam ◽  
Mark T. Greenaway ◽  
...  

AbstractPristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrier density. But linking these key transport parameters remains a challenging task for both theorists and experimentalists. Here, we report numerical and analytical models of carrier transport in graphene, which reveal a universal connection between graphene’s carrier mobility and the variation of its electrical conductivity with carrier density. Our model of graphene conductivity is based on a convolution of carrier density and its uncertainty, which is verified by numerical solution of the Boltzmann transport equation including the effects of charged impurity scattering and optical phonons on the carrier mobility. This model reproduces, explains, and unifies experimental mobility and conductivity data from a wide range of samples and provides a way to predict a priori all key transport parameters of graphene devices. Our results open a route for controlling the transport properties of graphene by doping and for engineering the properties of 2D materials and heterostructures.


1990 ◽  
Vol 105 (1) ◽  
pp. 9-14 ◽  
Author(s):  
J. Schreiber ◽  
P. Haertwich
Keyword(s):  

1994 ◽  
Vol 49 (6) ◽  
pp. 663-670
Author(s):  
S. Sh. Soulayman ◽  
C. Ch. Marti ◽  
Ch. Ch. Guilpin

Abstract In this paper we apply the method developed in part I for describing the crystalline state of two and three dimensional inert gases. For strong anharmonicity of fourth order, the equations of state of these gases are obtained. This way we calculate the thermoelastic properties of two and three dimensional argon, krypton and xenon using the Lennard-Jones potential. The corrections to the Helmholtz free energy and thermodynamic properties due to quantum effects are considered. The results are compared with the available experimental data.


2021 ◽  
Author(s):  
HASHIM AL MAHMUD ◽  
, MATTHEW RADUE ◽  
WILLIAM PISANI ◽  
GREGORY ODEGARD

The impact on the mechanical properties of unidirectional carbon fiber (CF)/epoxy composites reinforced with pristine graphene nanoplatelets (GNP), highly concentrated graphene oxide (GO), and Functionalized Graphene Oxide (FGO) are investigated in this study. The localized reinforcing effect of each of the graphene nanoplatelet types on the epoxy matrix is predicted at the nanoscale-level by molecular dynamics. The bulk-level mechanical properties of unidirectional CF/epoxy hybrid composites are predicted using micromechanics techniques considering the reinforcing function, content, and aspect ratios for each of the graphene nanoplatelets. In addition, the effect of nanoplatelets dispersion level is also investigated for the pristine graphene nanoplatelets considering a lower dispersion level with four layers of graphene nanoplatelets (4GNP). The results indicate that the shear and transverse properties are significantly affected by the nanoplatelet type, loading and aspect ratio. The results of this study can be used in the design of hybrid composites to tailor specific laminate properties by adjusting nanoplatelet parameters.


Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 440 ◽  
Author(s):  
Aaron Liu ◽  
Qing Peng

Graphene is one of the most important nanomaterials. The twisted bilayer graphene shows superior electronic properties compared to graphene. Here, we demonstrate via molecular dynamics simulations that twisted bilayer graphene possesses outstanding mechanical properties. We find that the mechanical strain rate and the presence of cracks have negligible effects on the linear elastic properties, but not the nonlinear mechanical properties, including fracture toughness. The “two-peak” pattern in the stress-strain curves of the bilayer composites of defective and pristine graphene indicates a sequential failure of the two layers. Our study provides a safe-guide for the design and applications of multilayer grapheme-based nanoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document