Mitochondria as a Source of Reactive Oxygen and Nitrogen Species: From Molecular Mechanisms to Human Health

2013 ◽  
Vol 18 (16) ◽  
pp. 2029-2074 ◽  
Author(s):  
Tiago R. Figueira ◽  
Mario H. Barros ◽  
Anamaria A. Camargo ◽  
Roger F. Castilho ◽  
Julio C.B. Ferreira ◽  
...  
Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 466
Author(s):  
Rachid Skouta

Maintaining the physiological level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the body is highly important in the fight against radical species in the context of human health [...]


2009 ◽  
Vol 89 (1) ◽  
pp. 27-71 ◽  
Author(s):  
Nava Bashan ◽  
Julia Kovsan ◽  
Ilana Kachko ◽  
Hilla Ovadia ◽  
Assaf Rudich

Regulated production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) adequately balanced by antioxidant systems is a prerequisite for the participation of these active substances in physiological processes, including insulin action. Yet, increasing evidence implicates ROS and RNS as negative regulators of insulin signaling, rendering them putative mediators in the development of insulin resistance, a common endocrine abnormality that accompanies obesity and is a risk factor of type 2 diabetes. This review deals with this dual, seemingly contradictory, function of ROS and RNS in regulating insulin action: the major processes for ROS and RNS generation and detoxification are presented, and a critical review of the evidence that they participate in the positive and negative regulation of insulin action is provided. The cellular and molecular mechanisms by which ROS and RNS are thought to participate in normal insulin action and in the induction of insulin resistance are then described. Finally, we explore the potential usefulness and the challenges in modulating the oxidant-antioxidant balance as a potentially promising, but currently disappointing, means of improving insulin action in insulin resistance-associated conditions, leading causes of human morbidity and mortality of our era.


2020 ◽  
Vol 60 (1) ◽  
pp. 010504
Author(s):  
Keisuke Takashima ◽  
Ahmad Shahir bin Ahmad Nor ◽  
Sugihiro Ando ◽  
Hideki Takahashi ◽  
Toshiro Kaneko

2020 ◽  
Vol 16 (3) ◽  
pp. 265-283
Author(s):  
Kyriaki Hatziagapiou ◽  
George I. Lambrou

Background: Reactive oxygen species and reactive nitrogen species, which are collectively called reactive oxygen nitrogen species, are inevitable by-products of cellular metabolic redox reactions, such as oxidative phosphorylation in the mitochondrial respiratory chain, phagocytosis, reactions of biotransformation of exogenous and endogenous substrata in endoplasmic reticulum, eicosanoid synthesis, and redox reactions in the presence of metal with variable valence. Among medicinal plants there is a growing interest in Crocus sativus L. It is a perennial, stemless herb, belonging to Iridaceae family, cultivated in various countries such as Greece, Italy, Spain, Israel, Morocco, Turkey, Iran, India, China, Egypt and Mexico. Objective: The present study aims to address the anti-toxicant role of Crocus sativus L. in the cases of toxin and drug toxification. Materials and Methods: An electronic literature search was conducted by the two authors from 1993 to August 2017. Original articles and systematic reviews (with or without meta-analysis), as well as case reports were selected. Titles and abstracts of papers were screened by a third reviewer to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. Results: The authors focused on literature concerning the role of Crocus Sativus L. as an anti-toxicant agent. Literature review showed that Saffron is a potent anti-toxicant agent with a plethora of applications ranging from anti-oxidant properties, to chemotherapy protective effects. Conclusion: Literature findings represented in current review herald promising results for using Crocus Sativus L. and/or its active constituents as anti-toxicant, chemotherapy-induced protection and toxin protection.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 612
Author(s):  
Mee Ree Kim

Antioxidant ingredients are known to contribute to the beneficial effects of natural products in health promotion as well as disease prevention by reducing oxidative stress, caused by reactive oxygen or nitrogen species, in biological systems [...]


Nanoscale ◽  
2021 ◽  
Author(s):  
Rachael Knoblauch ◽  
Chris Geddes

While the utility of reactive oxygen species in photodynamic therapies for both cancer treatments and antimicrobial applications has received much attention, the inherent potential of reactive nitrogen species (RNS) including...


2021 ◽  
Author(s):  
Cristina Parisi ◽  
Mariacristina Failla ◽  
Aurore Fraix ◽  
Luca Menilli ◽  
Francesca Moret ◽  
...  

The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as “unconventional” therapeutics with precise spatiotemporal control by using light stimuli may open entirely new horizons for innovative...


Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 374 ◽  
Author(s):  
Marta Rodríguez-Ruiz ◽  
Salvador González-Gordo ◽  
Amanda Cañas ◽  
María Jesús Campos ◽  
Alberto Paradela ◽  
...  

During the ripening of sweet pepper (Capsicum annuum L.) fruits, in a genetically controlled scenario, enormous metabolic changes occur that affect the physiology of most cell compartments. Peroxisomal catalase gene expression decreases after pepper fruit ripening, while the enzyme is also susceptible to undergo post-translational modifications (nitration, S-nitrosation, and oxidation) promoted by reactive oxygen and nitrogen species (ROS/RNS). Unlike most plant catalases, the pepper fruit enzyme acts as a homodimer, with an atypical native molecular mass of 125 to 135 kDa and an isoelectric point of 7.4, which is higher than that of most plant catalases. These data suggest that ROS/RNS could be essential to modulate the role of catalase in maintaining basic cellular peroxisomal functions during pepper fruit ripening when nitro-oxidative stress occurs. Using catalase from bovine liver as a model and biotin-switch labeling, in-gel trypsin digestion, and nanoliquid chromatography coupled with mass spectrometry, it was found that Cys377 from the bovine enzyme could potentially undergo S-nitrosation. To our knowledge, this is the first report of a cysteine residue from catalase that can be post-translationally modified by S-nitrosation, which makes it especially important to find the target points where the enzyme can be modulated under either physiological or adverse conditions.


2020 ◽  
Vol 48 (12) ◽  
pp. 4204-4214
Author(s):  
Jiayin Li ◽  
Fan Wu ◽  
Lanlan Nie ◽  
Xinpei Lu ◽  
Kostya Ostrikov

Sign in / Sign up

Export Citation Format

Share Document