Quality Control Mechanisms of Mitochondria: Another Important Target for Treatment of Peripheral Neuropathy

2021 ◽  
Author(s):  
Te Zhang ◽  
Jiannan Li ◽  
Guoqing Zhao
2005 ◽  
Vol 389 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Ekaterina SMIRNOVA ◽  
Magali TOUEILLE ◽  
Enni MARKKANEN ◽  
Ulrich HÜBSCHER

The human checkpoint sensor and alternative clamp Rad9–Rad1–Hus1 can interact with and specifically stimulate DNA ligase I. The very recently described interactions of Rad9–Rad1–Hus1 with MutY DNA glycosylase, DNA polymerase β and Flap endonuclease 1 now complete our view that the long-patch base excision machinery is an important target of the Rad9–Rad1–Hus1 complex, thus enhancing the quality control of DNA.


2021 ◽  
pp. 153537022199981
Author(s):  
Chamithi Karunanayake ◽  
Richard C Page

The chaperone heat shock protein 70 (Hsp70) and its network of co-chaperones serve as a central hub of cellular protein quality control mechanisms. Domain organization in Hsp70 dictates ATPase activity, ATP dependent allosteric regulation, client/substrate binding and release, and interactions with co-chaperones. The protein quality control activities of Hsp70 are classified as foldase, holdase, and disaggregase activities. Co-chaperones directly assisting protein refolding included J domain proteins and nucleotide exchange factors. However, co-chaperones can also be grouped and explored based on which domain of Hsp70 they interact. Here we discuss how the network of cytosolic co-chaperones for Hsp70 contributes to the functions of Hsp70 while closely looking at their structural features. Comparison of domain organization and the structures of co-chaperones enables greater understanding of the interactions, mechanisms of action, and roles played in protein quality control.


Author(s):  
H.V. Jagadish ◽  
Julia Stoyanovich ◽  
Bill Howe

The COVID-19 pandemic is compelling us to make crucial data-driven decisions quickly, bringing together diverse and unreliable sources of information without the usual quality control mechanisms we may employ. These decisions are consequential at multiple levels: they can inform local, state and national government policy, be used to schedule access to physical resources such as elevators and workspaces within an organization, and inform contact tracing and quarantine actions for individuals. In all these cases, significant inequities are likely to arise, and to be propagated and reinforced by data-driven decision systems. In this article, we propose a framework, called FIDES, for surfacing and reasoning about data equity in these systems.


2016 ◽  
Vol 213 (6) ◽  
pp. 693-704 ◽  
Author(s):  
Natalia Sikorska ◽  
Leticia Lemus ◽  
Auxiliadora Aguilera-Romero ◽  
Javier Manzano-Lopez ◽  
Howard Riezman ◽  
...  

Endoplasmic reticulum (ER) quality control mechanisms target terminally misfolded proteins for ER-associated degradation (ERAD). Misfolded glycophosphatidylinositol-anchored proteins (GPI-APs) are, however, generally poor ERAD substrates and are targeted mainly to the vacuole/lysosome for degradation, leading to predictions that a GPI anchor sterically obstructs ERAD. Here we analyzed the degradation of the misfolded GPI-AP Gas1* in yeast. We could efficiently route Gas1* to Hrd1-dependent ERAD and provide evidence that it contains a GPI anchor, ruling out that a GPI anchor obstructs ERAD. Instead, we show that the normally decreased susceptibility of Gas1* to ERAD is caused by canonical remodeling of its GPI anchor, which occurs in all GPI-APs and provides a protein-independent ER export signal. Thus, GPI anchor remodeling is independent of protein folding and leads to efficient ER export of even misfolded species. Our data imply that ER quality control is limited for the entire class of GPI-APs, many of them being clinically relevant.


Molecules ◽  
2018 ◽  
Vol 23 (5) ◽  
pp. 1219 ◽  
Author(s):  
Sophia Wedel ◽  
Maria Manola ◽  
Maria Cavinato ◽  
Ioannis Trougakos ◽  
Pidder Jansen-Dürr

2020 ◽  
Vol 11 ◽  
Author(s):  
Sumita Mishra ◽  
Brittany L. Dunkerly-Eyring ◽  
Gizem Keceli ◽  
Mark J. Ranek

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Courtney L Klaips ◽  
Megan L Hochstrasser ◽  
Christine R Langlois ◽  
Tricia R Serio

The proteostasis network has evolved to support protein folding under normal conditions and to expand this capacity in response to proteotoxic stresses. Nevertheless, many pathogenic states are associated with protein misfolding, revealing in vivo limitations on quality control mechanisms. One contributor to these limitations is the physical characteristics of misfolded proteins, as exemplified by amyloids, which are largely resistant to clearance. However, other limitations imposed by the cellular environment are poorly understood. To identify cell-based restrictions on proteostasis capacity, we determined the mechanism by which thermal stress cures the [PSI+]/Sup35 prion. Remarkably, Sup35 amyloid is disassembled at elevated temperatures by the molecular chaperone Hsp104. This process requires Hsp104 engagement with heat-induced non-prion aggregates in late cell-cycle stage cells, which promotes its asymmetric retention and thereby effective activity. Thus, cell division imposes a potent limitation on proteostasis capacity that can be bypassed by the spatial engagement of a quality control factor.


Author(s):  
Yoshimitsu Kiriyama ◽  
Hiromi Nochi

Mitochondria function to generate ATP and also play important roles in cellular homeostasis, signaling, apoptosis, autophagy, and metabolism. The loss of mitochondrial function results in cell death and various types of diseases. Therefore, quality control of mitochondria via intra- and intercellular pathways is crucial. Intracellular quality control consists of biogenesis, fusion and fission, and degradation of mitochondria in the cell, whereas intercellular quality control involves tunneling nanotubes and extracellular vesicles. In this review, we outline the current knowledge on the intra- and intercellular quality control mechanisms of mitochondria.


Author(s):  
Shikha Sharma ◽  
Qixin Wang ◽  
Thivanka Muthumalage ◽  
Irfan Rahman

Cigarette smoke (CS) exposure results in lung damage and inflammation through mitochondrial dysfunction. Mitochondria quality control is sustained by Miro1 (Rhot1), a calcium-binding membrane-anchored GTPase by its interaction with PINK1/Parkin during mitophagy. However, the exact mechanism that operates this interaction of mitophagy machinery in Miro1 degradation and CS-induced mitochondrial dysfunction that results in lung inflammation remains unclear. We hypothesized that mitochondrial Miro1 plays an important role in regulating mitophagy machinery and resulting lung inflammation by CS in mouse lung. We showed a role of Miro1 in CS-induced mitochondrial dysfunction and quality control mechanisms. The Rhot1Fl/Fl (WT) and lung epithelial cell-specific Rhot1 KO were exposed to mainstream CS for 3 days (acute) and 4 months (chronic). The cellular infiltration, cytokines, and lung histopathology were studied for the inflammatory response in the lungs. Acute CS exposure showed a notable increase in the total inflammatory cells, macrophages, and neutrophils associated with inflammatory mediators and Miro1 associated mitochondrial quality control proteins Parkin and OPA1. Chronic exposure showed an increase infiltration of total inflammatory cells and neutrophils versus air controls. Histopathological changes, such as pulmonary macrophages and neutrophils were increased in CS exposed mice. The epithelial Miro1 ablation led to augmentation of inflammatory cell infiltration with alteration in the levels of pro-inflammatory cytokines and histopathological changes. Thus, CS induces disruption of mitochondrial quality control mechanisms, and Rhot1/Miro1 mediates the process of CS-induced mitochondrial dysfunction ensuing lung inflammatory responses.


Sign in / Sign up

Export Citation Format

Share Document