scholarly journals Regulation of IκBβ Expression in Testis

2002 ◽  
Vol 13 (12) ◽  
pp. 4179-4194 ◽  
Author(s):  
Lucy M. Budde ◽  
Chun Wu ◽  
Christopher Tilman ◽  
Iris Douglas ◽  
Sankar Ghosh

IκBα and IκBβ are regulators of the nuclear factor-κB (NF-κB) transcription factor family. Both IκBs bind to the same NF-κB dimers and are widely expressed in different cells and tissues. To better understand how these two IκB isoforms differ biologically, we have characterized the expression of IκBβ in testis, a tissue in which IκBα is only minimally expressed. We have found that IκBβ expression is localized within the haploid spermatid stages of spermatogenesis and follows the expression of nuclear NF-κB. IκBβ expression in haploid spermatids is likely regulated by Sox family proteins, members of which are also expressed within spermatids. We have shown that both SRY and Sox-5 can bind to multiple Sox binding sites found within the IκBβ promoter and can enhance transcription of a reporter gene in transient transfection assays. We also demonstrate that IκBβ mRNA is strongly expressed in developing male gonads. These results therefore suggest that IκBβ may be a novel target for transcription factors of the HMG-box SRY/Sox family and imply a potential role for NF-κB/IκBβ in spermatogenesis.

Neurosurgery ◽  
2011 ◽  
Vol 68 (6) ◽  
pp. 1667-1676 ◽  
Author(s):  
Mitja I. Kurki ◽  
Sanna-Kaisa Häkkinen ◽  
Juhana Frösen ◽  
Riikka Tulamo ◽  
Mikael von und zu Fraunberg ◽  
...  

Abstract BACKGROUND: Aneurysmal subarachnoid hemorrhage, almost always from saccular intracranial aneurysm (sIA), is a devastating form of stroke that affects the working-age population. Cellular and molecular mechanisms predisposing to the rupture of the sIA wall are largely unknown. This knowledge would facilitate the design of novel diagnostic tools and therapies for the sIA disease. OBJECTIVE: To investigate gene expression patterns distinguishing ruptured and unruptured sIA. METHODS: We compared the whole-genome expression profile of 11 ruptured sIA wall samples with that of 8 unruptured ones using oligonucleotide microarrays. Signaling pathways enriched in the ruptured sIA walls were identified with bioinformatic analyses. Their transcriptional control was predicted in silico by seeking the enrichment of conserved transcription factor binding sites in the promoter regions of differentially expressed genes. RESULTS: Overall, 686 genes were significantly upregulated and 740 were downregulated in the ruptured sIA walls. Significantly upregulated biological processes included response to turbulent blood flow, chemotaxis, leukocyte migration, oxidative stress, vascular remodeling; and extracellular matrix degradation. Toll-like receptor signaling and nuclear factor-κB, hypoxia-inducible factor-1A, and ETS transcription factor binding sites were significantly enriched among the upregulated genes. CONCLUSION: We identified pathways and candidate genes associated with the rupture of human sIA wall. Our results may provide clues to the molecular mechanism in sIA wall rupture and insight for novel therapeutic strategies to prevent rupture.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4214-4214
Author(s):  
Richard Dahl ◽  
Kristin S. Owens

Abstract Gfi-1 −/− mice generate abnormal immature myeloid cells exhibiting characteristics of both monocytes and granulocytes. One of Gfi-1’s critical functions is to downregulate monocyte specific genes in order for granulocytes to develop properly. Since the transcription factors C/EBP alpha and C/EBP epsilon are needed for granulocyte development we hypothesized that these factors may regulate Gfi-1 expression. The Gfi-1 promoter contains several putative C/EBP binding sites and we show by electrophoretic mobility shift and chromatin immunoprecipitation that C/EBP family members can bind to some of these sites. However we were unable to see activation of the Gfi-1 promoter by C/EBP proteins in transient transfection reporter assays. Other groups have shown that C/EBP proteins can synergize with the transcription factor c-myb. We observed that the Gfi-1 promoter contains sites for the hematopoietic transcription factor c-myb. Sevral of these c-myb binding sites are adjacent to C/EBP binding sites. In reporter assays in non-hematopoietic cells c-myb activated the Gfi-1 promoter by itself and this activity was enhanced when we included either C/EBP alpha or epsilon in the transfection. Our data suggests that C/EBP proteins and c-myb regulate the transcription of Gfi-1 in myeloid cells.


Development ◽  
2002 ◽  
Vol 129 (19) ◽  
pp. 4387-4397
Author(s):  
Fiona C. Wardle ◽  
Daniel H. Wainstock ◽  
Hazel L. Sive

The cement gland marks the extreme anterior ectoderm of the Xenopus embryo, and is determined through the overlap of several positional domains. In order to understand how these positional cues activate cement gland differentiation, the promoter of Xag1, a marker of cement gland differentiation, was analyzed. Previous studies have shown that Xag1 expression can be activated by the anterior-specific transcription factor Otx2, but that this activation is indirect. 102 bp of upstream genomic Xag1 sequence restricts reporter gene expression specifically to the cement gland. Within this region, putative binding sites for Ets and ATF/CREB transcription factors are both necessary and sufficient to drive cement gland-specific expression, and cooperate to do so. Furthermore, while the putative ATF/CREB factor is activated by Otx2, a factor acting through the putative Ets-binding site is not. These results suggest that Ets-like and ATF/CREB-like family members play a role in regulating Xag1 expression in the cement gland, through integration of Otx2 dependent and independent pathways.


2001 ◽  
Vol 268 (23) ◽  
pp. 6066-6075 ◽  
Author(s):  
Alessandra Romanelli ◽  
Carlo Pedone ◽  
Michele Saviano ◽  
Nicoletta Bianchi ◽  
Monica Borgatti ◽  
...  

1998 ◽  
Vol 94 (6) ◽  
pp. 557-572 ◽  
Author(s):  
Peter J. Barnes

1. Glucocorticoids are widely used for the suppression of inflammation in chronic inflammatory diseases such as asthma, rheumatoid arthritis, inflammatory bowel disease and autoimmune diseases, all of which are associated with increased expression of inflammatory genes. The molecular mechanisms involved in this antiinflammatory action of glucocorticoids is discussed, particularly in asthma, which accounts for the highest clinical use of these agents. 2. Glucocorticoids bind to glucocorticoid receptors in the cytoplasm which then dimerize and translocate to the nucleus, where they bind to glucocorticoid response elements (GRE) on glucocorticoid-responsive genes, resulting in increased transcription. Glucocorticoids may increase the transcription of genes coding for antiinflammatory proteins, including lipocortin-1, interleukin-10, interleukin-1 receptor antagonist and neutral endopeptidase, but this is unlikely to account for all of the widespread anti-inflammatory actions of glucocorticoids. 3. The most striking effect of glucocorticoids is to inhibit the expression of multiple inflammatory genes (cytokines, enzymes, receptors and adhesion molecules). This cannot be due to a direct interaction between glucocorticoid receptors and GRE, as these binding sites are absent from the promoter regions of most inflammatory genes. It is more likely to be due to a direct inhibitory interaction between activated glucocorticoid receptors and activated transcription factors, such as nuclear factor-κB and activator protein-1, which regulate the inflammatory gene expression. 4. It is increasingly recognized that glucocorticoids change the chromatin structure. Glucocorticoid receptors also interact with CREB-binding protein (CBP), which acts as a co-activator of transcription, binding several other transcription factors that compete for binding sites on this molecule. Increased transcription is associated with uncoiling of DNA wound around histone and this is secondary to acetylation of the histone residues by the enzymic action of CBP. Glucocorticoids may lead to deacetylation of histone, resulting in tighter coiling of DNA and reduced access of transcription factors to their binding sites, thereby suppressing gene expression. 5. Rarely patients with chronic inflammatory diseases fail to respond to glucocorticoids, although endocrine function of steroids is preserved. This may be due to excessive formation of activator protein-1 at the inflammatory site, which consumes activated glucocorticoid receptors so that they are not available for suppressing inflammatory genes. 6. This new understanding of glucocorticoid mechanisms may lead to the development of novel steroids with less risk of side effects (which are due to the endocrine and metabolic actions of steroids). ‘Dissociated’ steroids which are more active in transrepression (interaction with transcription factors) than transactivation (GRE binding) have now been developed. Some of the transcription factors that are inhibited by glucocorticoid, such as nuclear factor-κB, are also targets for novel anti-inflammatory therapies.


2004 ◽  
Vol 32 (6) ◽  
pp. 1093-1094 ◽  
Author(s):  
S.A. Rushworth ◽  
M.A. O'Connell

HO-1 (haem oxygenase-1) is a stress-inducible enzyme that plays a protective role in inflammation. Pro-inflammatory mediators, including lipopolysaccharide and cytokines, induce HO-1 expression. The 5′-flanking region of the HO-1 gene contains binding sites for the transcription factors that regulate inflammation, including nuclear factor-κB and activator protein 1. However, these do not appear to mediate lipopolysaccharide-induced HO-1 gene expression. In response to haem and antioxidants, murine HO-1 is regulated by the transcription factor Nrf2 (NF-E2-related factor 2). This transcription factor may also be important in the regulation of HO-1 by pro-inflammatory stimuli.


1998 ◽  
Vol 18 (11) ◽  
pp. 6293-6304 ◽  
Author(s):  
Vesco Mutskov ◽  
Delphine Gerber ◽  
Dimitri Angelov ◽  
Juan Ausio ◽  
Jerry Workman ◽  
...  

ABSTRACT In this study, we examined the effect of acetylation of the NH2 tails of core histones on their binding to nucleosomal DNA in the absence or presence of bound transcription factors. To do this, we used a novel UV laser-induced protein-DNA cross-linking technique, combined with immunochemical and molecular biology approaches. Nucleosomes containing one or five GAL4 binding sites were reconstituted with hypoacetylated or hyperacetylated core histones. Within these reconstituted particles, UV laser-induced histone-DNA cross-linking was found to occur only via the nonstructured histone tails and thus presented a unique tool for studying histone tail interactions with nucleosomal DNA. Importantly, these studies demonstrated that the NH2 tails were not released from nucleosomal DNA upon histone acetylation, although some weakening of their interactions was observed at elevated ionic strengths. Moreover, the binding of up to five GAL4-AH dimers to nucleosomes occupying the central 90 bp occurred without displacement of the histone NH2 tails from DNA. GAL4-AH binding perturbed the interaction of each histone tail with nucleosomal DNA to different degrees. However, in all cases, greater than 50% of the interactions between the histone tails and DNA was retained upon GAL4-AH binding, even if the tails were highly acetylated. These data illustrate an interaction of acetylated or nonacetylated histone tails with DNA that persists in the presence of simultaneously bound transcription factors.


2015 ◽  
Vol 308 (10) ◽  
pp. C803-C812 ◽  
Author(s):  
Colin N. Young ◽  
Anfei Li ◽  
Frederick N. Dong ◽  
Julie A. Horwath ◽  
Catharine G. Clark ◽  
...  

Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the brain circumventricular subfornical organ (SFO) mediate the central hypertensive actions of Angiotensin II (ANG II). However, the downstream signaling events remain unclear. Here we tested the hypothesis that angiotensin type 1a receptors (AT1aR), ER stress, and ROS induce activation of the transcription factor nuclear factor-κB (NF-κB) during ANG II-dependent hypertension. To spatiotemporally track NF-κB activity in the SFO throughout the development of ANG II-dependent hypertension, we used SFO-targeted adenoviral delivery and longitudinal bioluminescence imaging in mice. During low-dose infusion of ANG II, bioluminescence imaging revealed a prehypertensive surge in NF-κB activity in the SFO at a time point prior to a significant rise in arterial blood pressure. SFO-targeted ablation of AT1aR, inhibition of ER stress, or adenoviral scavenging of ROS in the SFO prevented the ANG II-induced increase in SFO NF-κB. These findings highlight the utility of bioluminescence imaging to longitudinally track transcription factor activation during the development of ANG II-dependent hypertension and reveal an AT1aR-, ER stress-, and ROS-dependent prehypertensive surge in NF-κB activity in the SFO. Furthermore, the increase in NF-κB activity before a rise in arterial blood pressure suggests a causal role for SFO NF-κB in the development of ANG II-dependent hypertension.


1994 ◽  
Vol 14 (11) ◽  
pp. 7276-7284
Author(s):  
W Zhong ◽  
J Mirkovitch ◽  
J E Darnell

Hepatocyte nuclear factor 4 (HNF-4) is a liver-enriched transcription factor and a member of the steroid hormone receptor superfamily. HNF-4 is required for the hepatoma-specific expression of HNF-1 alpha, another liver-enriched transcription factor, suggesting the early participation of HNF-4 in development. To prepare for further study of HNF-4 in development, the tissue-specific expression of the mouse HNF-4 gene was studied by analyzing the promoter region for required DNA elements. DNase-hypersensitive sites in the gene in liver and kidney tissues were found in regions both distal and proximal to the RNA start that were absent in tissues in which HNF-4 expression did not occur. By use of reporter constructs in transient-transfection assays and with transgenic mice, a region sufficient to drive liver-specific expression of HNF-4 was identified. While an HNF-1 binding site between bp -98 and -68 played an important role in the hepatoma-specific promoter activity of HNF-4 in transient-transfection assays, it was not sufficient for the liver-specific expression of a reporter gene in transgenic mice. Distal enhancer elements indicated by the presence of DNase I-hypersensitive sites at kb -5.5 and -6.5, while not functional in transient-transfection assays, were required for the correct expression of the mouse HNF-4 gene in animals.


Sign in / Sign up

Export Citation Format

Share Document