scholarly journals Mammalian Dynamin-like Protein DLP1 Tubulates Membranes

2001 ◽  
Vol 12 (9) ◽  
pp. 2894-2905 ◽  
Author(s):  
Yisang Yoon ◽  
Kelly R. Pitts ◽  
Mark A. McNiven

Dynamins are large GTPases with mechanochemical properties that are known to constrict and tubulate membranes. A recently identified mammalian dynamin-like protein (DLP1) is essential for the proper cellular distribution of mitochondria and the endoplasmic reticulum in cultured cells. In this study, we investigated the ability of DLP1 to remodel membranes similar to conventional dynamin. We found that the expression of a GTPase-defective mutant, DLP1-K38A, in cultured cells led to the formation of large cytoplasmic aggregates. Electron microscopy (EM) of cells expressing DLP1-K38A revealed that these aggregates were comprised of membrane tubules of a consistent diameter. High-magnification EM revealed the presence of many regular striations along individual membrane tubules, and immunogold labeling confirmed the association of DLP1 with these structures. Biochemical experiments with the use of recombinant DLP1 and labeled GTP demonstrated that DLP1-K38A binds but does not hydrolyze or release GTP. Furthermore, the affinity of DLP1-K38A for membrane is increased compared with wild-type DLP1. To test whether DLP1 could tubulate membrane in vitro, recombinant DLP1 was combined with synthetic liposomes and nucleotides. We found that DLP1 protein alone assembled into sedimentable macromolecular structures in the presence of guanosine-5′-O-(3-thio)triphosphate (GTPγS) but not GTP. EM of the GTPγS-treated DLP1 revealed clusters of stacked helical ring structures. When liposomes were included with DLP1, formation of long membrane tubules similar in size to those formed in vivo was observed. Addition of GTPγS greatly enhanced membrane tubule formation, suggesting the GTP-bound form of DLP1 deforms liposomes into tubules as the DLP1-K38A does in vivo. These results provide the first evidence that the dynamin family member, DLP1, is able to tubulate membranes both in living cells and in vitro. Furthermore, these findings also indicate that despite the limited homology to conventional dynamins (35%) these proteins remodel membranes in a similar manner.

2018 ◽  
Vol 29 (6) ◽  
pp. 1720-1730 ◽  
Author(s):  
Miriam Zacchia ◽  
Xuefei Tian ◽  
Enrica Zona ◽  
Robert J. Alpern ◽  
Patricia A. Preisig

Background Urine citrate is reabsorbed exclusively along the renal proximal tubule via the apical Na+-dicarboxylate cotransporter NaDC-1. We previously showed that an acid load in vivo and media acidification in vitro increase NaDC-1 activity through endothelin-1 (ET-1)/endothelin B (ETB) signaling. Here, we further examined the signaling pathway mediating acid-induced NaDC-1 activity.Methods We transiently transfected cultured opossum kidney cells, a model of the proximal tubule, with NaDC-1 and ETB and measured [14C]-citrate uptake after media acidification under various experimental conditions, including inactivation of Pyk2 and c-Src, which were previously shown to be activated by media acidification. Wild-type (Pyk2+/+) and Pyk2-null (Pyk2−/−) mice were exposed to NH4Cl loading and euthanized after various end points, at which time we harvested the kidneys for immunoblotting and brush border membrane NaDC-1 activity studies.Results Inhibition of Pyk2 or c-Src prevented acid stimulation but not ET-1 stimulation of NaDC-1 in vitro. Consistent with these results, NH4Cl loading stimulated NaDC-1 activity in kidneys of wild-type but not Pyk2−/− mice. In cultured cells and in mice, ERK1/2 was rapidly phosphorylated by acid loading, even after Pyk2 knockdown, and it was required for acid but not ET-1/ETB stimulation of NaDC-1 in vitro. Media acidification also induced the phosphorylation of Raf1 and p90RSK, components of the ERK1/2 pathway, and inhibition of these proteins blocked acid stimulation of NaDC-1 activity.Conclusions Acid stimulation of NaDC-1 activity involves Pyk2/c-Src and Raf1-ERK1/2-p90RSK signaling pathways, but these pathways are not downstream of ET-1/ETB in this process.


1997 ◽  
Vol 17 (10) ◽  
pp. 5679-5687 ◽  
Author(s):  
C P Chang ◽  
Y Jacobs ◽  
T Nakamura ◽  
N A Jenkins ◽  
N G Copeland ◽  
...  

The Pbx1 and Meis1 proto-oncogenes code for divergent homeodomain proteins that are targets for oncogenic mutations in human and murine leukemias, respectively, and implicated by genetic analyses to functionally collaborate with Hox proteins during embryonic development and/or oncogenesis. Although Pbx proteins have been shown to dimerize with Hox proteins and modulate their DNA binding properties in vitro, the biochemical compositions of endogenous Pbx-containing complexes have not been determined. In the present study, we demonstrate that Pbx and Meis proteins form abundant complexes that comprise a major Pbx-containing DNA binding activity in nuclear extracts of cultured cells and mouse embryos. Pbx1 and Meis1 dimerize in solution and cooperatively bind bipartite DNA sequences consisting of directly adjacent Pbx and Meis half sites. Pbx1-Meis1 heterodimers display distinctive DNA binding specificities and cross-bind to a subset of Pbx-Hox sites, including those previously implicated as response elements for the execution of Pbx-dependent Hox programs in vivo. Chimeric oncoprotein E2a-Pbx1 is unable to bind DNA with Meis1, due to the deletion of amino-terminal Pbx1 sequences following fusion with E2a. We conclude that Meis proteins are preferred in vivo DNA binding partners for wild-type Pbx1, a relationship that is circumvented by its oncogenic counterpart E2a-Pbx1.


2000 ◽  
Vol 11 (3) ◽  
pp. 941-955 ◽  
Author(s):  
Alasdair M. Robertson ◽  
Victoria J. Allan

Treatment of cultured cells with brefeldin A (BFA) induces the formation of extensive membrane tubules from the Golgi apparatus,trans-Golgi network, and early endosomes in a microtubule-dependent manner. We have reconstituted this transport process in vitro using Xenopus egg cytosol and a rat liver Golgi-enriched membrane fraction. The presence of BFA results in the formation of an intricate, interconnected tubular membrane network, a process that, as in vivo, is inhibited by nocodazole, the H1 anti-kinesin monoclonal antibody, and by membrane pretreatment with guanosine 5′-O-(3-thiotriphosphate). Surprisingly, membrane tubule formation is not due to the action of conventional kinesin or any of the other motors implicated in Golgi membrane dynamics. Two candidate motors of ∼100 and ∼130 kDa have been identified using the H1 antibody, both of which exhibit motor properties in a biochemical assay. Finally, BFA-induced membrane tubule formation does not occur in metaphase cytosol, and because membrane binding of both candidate motors is not altered after incubation in metaphase compared with interphase cytosol, these results suggest that either the ATPase or microtubule-binding activity of the relevant motor is cell cycle regulated.


2002 ◽  
Vol 22 (10) ◽  
pp. 3373-3388 ◽  
Author(s):  
Maofu Fu ◽  
Chenguang Wang ◽  
Jian Wang ◽  
Xueping Zhang ◽  
Toshiyuki Sakamaki ◽  
...  

ABSTRACT The androgen receptor (AR) is a nuclear hormone receptor superfamily member that conveys both trans repression and ligand-dependent trans-activation function. Activation of the AR by dihydrotestosterone (DHT) regulates diverse physiological functions including secondary sexual differentiation in the male and the induction of apoptosis by the JNK kinase, MEKK1. The AR is posttranslationally modified on lysine residues by acetylation and sumoylation. The histone acetylases p300 and P/CAF directly acetylate the AR in vitro at a conserved KLKK motif. To determine the functional properties governed by AR acetylation, point mutations of the KLKK motif that abrogated acetylation were engineered and examined in vitro and in vivo. The AR acetylation site point mutants showed wild-type trans repression of NF-κB, AP-1, and Sp1 activity; wild-type sumoylation in vitro; wild-type ligand binding; and ligand-induced conformational changes. However, acetylation-deficient AR mutants were selectively defective in DHT-induced trans activation of androgen-responsive reporter genes and coactivation by SRC1, Ubc9, TIP60, and p300. The AR acetylation site mutant showed 10-fold increased binding of the N-CoR corepressor compared with the AR wild type in the presence of ligand. Furthermore, histone deacetylase 1 (HDAC1) bound the AR both in vivo and in cultured cells and HDAC1 binding to the AR was disengaged in a DHT-dependent manner. MEKK1 induced AR-dependent apoptosis in prostate cancer cells. The AR acetylation mutant was defective in MEKK1-induced apoptosis, suggesting that the conserved AR acetylation site contributes to a pathway governing prostate cancer cellular survival. As AR lysine residue mutations that abrogate acetylation correlate with enhanced binding of the N-CoR repressor in cultured cells, the conserved AR motif may directly or indirectly regulate ligand-dependent corepressor disengagement and, thereby, ligand-dependent trans activation.


2009 ◽  
Vol 75 (15) ◽  
pp. 4975-4983 ◽  
Author(s):  
Xianhua Yin ◽  
James R. Chambers ◽  
Roger Wheatcroft ◽  
Roger P. Johnson ◽  
Jing Zhu ◽  
...  

ABSTRACT There are contradictory literature reports on the role of verotoxin (VT) in adherence of enterohemorrhagic Escherichia coli O157:H7 (O157 EHEC) to intestinal epithelium. There are reports that putative virulence genes of O island 7 (OI-7), OI-15, and OI-48 of this pathogen may also affect adherence in vitro. Therefore, mutants of vt2 and segments of OI-7 and genes aidA 15 (gene from OI-15) and aidA 48 (gene from OI-48) were generated and evaluated for adherence in vitro to cultured human HEp-2 and porcine jejunal epithelial (IPEC-J2) cells and in vivo to enterocytes in pig ileal loops. VT2-negative mutants showed significant decreases in adherence to both HEp-2 and IPEC-J2 cells and to enterocytes in pig ileal loops; complementation only partially restored VT2 production but fully restored the adherence to the wild-type level on cultured cells. Deletion of OI-7 and aidA 48 had no effect on adherence, whereas deletion of aidA 15 resulted in a significant decrease in adherence in pig ileal loops but not to the cultured cells. This investigation supports the findings that VT2 plays a role in adherence, shows that results obtained in adherence of E. coli O157:H7 in vivo may differ from those obtained in vitro, and identified AIDA-15 as having a role in adherence of E. coli O157:H7.


2015 ◽  
Vol 89 (7) ◽  
pp. 3523-3533 ◽  
Author(s):  
Benson Yee Hin Cheng ◽  
Emilio Ortiz-Riaño ◽  
Aitor Nogales ◽  
Juan Carlos de la Torre ◽  
Luis Martínez-Sobrido

ABSTRACTArenaviruses have a significant impact on public health and pose a credible biodefense threat, but the development of safe and effective arenavirus vaccines has remained elusive, and currently, no Food and Drug Administration (FDA)-licensed arenavirus vaccines are available. Here, we explored the use of a codon deoptimization (CD)-based approach as a novel strategy to develop live-attenuated arenavirus vaccines. We recoded the nucleoprotein (NP) of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with the least frequently used codons in mammalian cells, which caused lower LCMV NP expression levels in transfected cells that correlated with decreased NP activity in cell-based functional assays. We used reverse-genetics approaches to rescue a battery of recombinant LCMVs (rLCMVs) encoding CD NPs (rLCMV/NPCD) that showed attenuated growth kineticsin vitro. Moreover, experiments using the well-characterized mouse model of LCMV infection revealed that rLCMV/NPCD1and rLCMV/NPCD2were highly attenuatedin vivobut, upon a single immunization, conferred complete protection against a subsequent lethal challenge with wild-type (WT) recombinant LCMV (rLCMV/WT). Both rLCMV/NPCD1and rLCMV/NPCD2were genetically and phenotypically stable during serial passages in FDA vaccine-approved Vero cells. These results provide proof of concept of the safety, efficacy, and stability of a CD-based approach for developing live-attenuated vaccine candidates against human-pathogenic arenaviruses.IMPORTANCESeveral arenaviruses cause severe hemorrhagic fever in humans and pose a credible bioterrorism threat. Currently, no FDA-licensed vaccines are available to combat arenavirus infections, while antiarenaviral therapy is limited to the off-label use of ribavirin, which is only partially effective and is associated with side effects. Here, we describe the generation of recombinant versions of the prototypic arenavirus LCMV encoding codon-deoptimized viral nucleoproteins (rLCMV/NPCD). We identified rLCMV/NPCD1and rLCMV/NPCD2to be highly attenuatedin vivobut able to confer protection against a subsequent lethal challenge with wild-type LCMV. These viruses displayed an attenuated phenotype during serial amplification passages in cultured cells. Our findings support the use of this approach for the development of safe, stable, and protective live-attenuated arenavirus vaccines.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
N.K.R. Smith ◽  
K.E. Hunter ◽  
P. Mobley ◽  
L.P. Felpel

Electron probe energy dispersive x-ray microanalysis (XRMA) offers a powerful tool for the determination of intracellular elemental content of biological tissue. However, preparation of the tissue specimen , particularly excitable central nervous system (CNS) tissue , for XRMA is rather difficult, as dissection of a sample from the intact organism frequently results in artefacts in elemental distribution. To circumvent the problems inherent in the in vivo preparation, we turned to an in vitro preparation of astrocytes grown in tissue culture. However, preparations of in vitro samples offer a new and unique set of problems. Generally, cultured cells, growing in monolayer, must be harvested by either mechanical or enzymatic procedures, resulting in variable degrees of damage to the cells and compromised intracel1ular elemental distribution. The ultimate objective is to process and analyze unperturbed cells. With the objective of sparing others from some of the same efforts, we are reporting the considerable difficulties we have encountered in attempting to prepare astrocytes for XRMA.Tissue cultures of astrocytes from newborn C57 mice or Sprague Dawley rats were prepared and cultured by standard techniques, usually in T25 flasks, except as noted differently on Cytodex beads or on gelatin. After different preparative procedures, all samples were frozen on brass pins in liquid propane, stored in liquid nitrogen, cryosectioned (0.1 μm), freeze dried, and microanalyzed as previously reported.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2021 ◽  
pp. 1-24
Author(s):  
Juho-Matti Renko ◽  
Arun Kumar Mahato ◽  
Tanel Visnapuu ◽  
Konsta Valkonen ◽  
Mati Karelson ◽  
...  

Background: Parkinson’s disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. Objective: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF’s receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. Methods: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. Results: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons from MPP +-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and could have protected dopaminergic fibers in the striatum. Conclusion: BT44 holds potential for further development into a novel, possibly disease-modifying therapy for PD.


Sign in / Sign up

Export Citation Format

Share Document