scholarly journals Membrane localization of the kinase which phosphorylates p34cdc2 on threonine 14.

1994 ◽  
Vol 5 (3) ◽  
pp. 273-282 ◽  
Author(s):  
S Kornbluth ◽  
B Sebastian ◽  
T Hunter ◽  
J Newport

The key regulator of entry into mitosis is the serine/threonine kinase p34cdc2. This kinase is regulated both by association with cyclins and by phosphorylation at several sites. Phosphorylation at Tyr 15 and Thr 14 are believed to inhibit the kinase activity of cdc2. In Schizosaccharomyces pombe, the wee1 (and possibly mik1) protein kinase catalyzes phosphorylation of Tyr 15. It is not clear whether these or other, as yet unidentified, protein kinases phosphorylate Thr 14. In this report we show, using extracts of Xenopus eggs, that the Thr 14-directed kinase is tightly membrane associated. Specifically, we have shown that a purified membrane fraction, in the absence of cytoplasm, can promote phosphorylation of cdc2 on both Thr 14 and Tyr 15. In contrast, the cytoplasm can phosphorylate cdc2 only on Tyr 15, suggesting the existence of at least two distinctly localized subpopulations of cdc2 Tyr 15-directed kinases. The membrane-associated Tyr 15 and Thr 14 kinase activities behaved similarly during salt or detergent extraction and were similarly regulated during the cell cycle and by the checkpoint machinery that delays mitosis while DNA is being replicated. This suggests the possibility that a dual-specificity membrane-associated protein kinase may catalyze phosphorylation of both Tyr 15 and Thr 14.

2019 ◽  
Vol 20 (19) ◽  
pp. 4852 ◽  
Author(s):  
Junjun Wang ◽  
Juanjuan Liu ◽  
Xinmiao Ji ◽  
Xin Zhang

STK16, reported as a Golgi localized serine/threonine kinase, has been shown to participate in multiple cellular processes, including the TGF-β signaling pathway, TGN protein secretion and sorting, as well as cell cycle and Golgi assembly regulation. However, the mechanisms of the regulation of its kinase activity remain underexplored. It was known that STK16 is autophosphorylated at Thr185, Ser197, and Tyr198 of the activation segment in its kinase domain. We found that STK16 localizes to the cell membrane and the Golgi throughout the cell cycle, but mutations in the auto-phosphorylation sites not only alter its subcellular localization but also affect its kinase activity. In particular, the Tyr198 mutation alone significantly reduced the kinase activity of STK16, abolished its Golgi and membrane localization, and affected the cell cycle progression. This study demonstrates that a single site autophosphorylation of STK16 could affect its localization and function, which provides insights into the molecular regulatory mechanism of STK16’s kinase activity.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 472 ◽  
Author(s):  
Elena J. Kumm ◽  
Oliver Pagel ◽  
Stepan Gambaryan ◽  
Ulrich Walter ◽  
René P. Zahedi ◽  
...  

The cell cycle is controlled by microtubule-associated serine/threonine kinase-like (MASTL), which phosphorylates the cAMP-regulated phosphoproteins 19 (ARPP19) at S62 and 19e/α-endosulfine (ENSA) at S67and converts them into protein phosphatase 2A (PP2A) inhibitors. Based on initial proteomic data, we hypothesized that the MASTL-ENSA/ARPP19-PP2A pathway, unknown until now in platelets, is regulated and functional in these anucleate cells. We detected ENSA, ARPP19 and various PP2A subunits (including seven different PP2A B-subunits) in proteomic studies of human platelets. ENSA-S109/ARPP19–S104 were efficiently phosphorylated in platelets treated with cAMP- (iloprost) and cGMP-elevating (NO donors/riociguat) agents. ENSA-S67/ARPP19-S62 phosphorylations increased following PP2A inhibition by okadaic acid (OA) in intact and lysed platelets indicating the presence of MASTL or a related protein kinase in human platelets. These data were validated with recombinant ENSA/ARPP19 and phospho-mutants using recombinant MASTL, protein kinase A and G. Both ARPP19 phosphorylation sites S62/S104 were dephosphorylated by platelet PP2A, but only S62-phosphorylated ARPP19 acted as PP2A inhibitor. Low-dose OA treatment of platelets caused PP2A inhibition, diminished thrombin-stimulated platelet aggregation and increased phosphorylation of distinct sites of VASP, Akt, p38 and ERK1/2 MAP kinases. In summary, our data establish the entire MASTL(like)–ENSA/ARPP19–PP2A pathway in human platelets and important interactions with the PKA, MAPK and PI3K/Akt systems.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 643-643 ◽  
Author(s):  
Francesco A. Piazza ◽  
Maria Ruzzene ◽  
Giovanni Di Maira ◽  
Enrico Brunetta ◽  
Luca Bonanni ◽  
...  

Abstract Survival and proliferation of Multiple Myeloma plasma cells (MMPCs) depend on the activation of signaling pathways through the interaction with the surrounding bone marrow microenvironment. CK2 is a ubiquitous cellular serine-threonine kinase, whose involvement in oncogenic transformation, apoptosis and cell cycle progression has recently become matter of intense research. Due to its connection with signaling molecules pivotal for plasma cell (PCs) survival, such as those implicated in the TNF-α/NF-κB, IGF1/PI3K/AKT and Wnt/β-catenin pathways, CK2 is likely to play a central role in MM biology. We investigated CK2 function in MMPCs survival and cell cycle progression, in the modulation of the sensitivity to chemotherapeutics and in the regulation of the I-κB/NF-κB dependent pathway. We first analysed the CK2 protein levels and specific kinase activity in MMPCs. Different cell lines and highly purified CD138+ PCs from 5 patients were used. We observed higher protein levels of the CK2 catalytic subunit αin the neoplastic MMPCs than in controls (resting peripheral blood and splenic B lymphocytes). Moreover, also the total CK2-dependent kinase activity was found significantly increased in MMPCs. We also assessed the levels and pattern of total protein phosphorylation by radioactive phosphate incorporation assay. We found that MMPCs share a similar pattern of phoshorylated proteins. The degree of phosphorylation of some of these proteins was significantly reduced in the presence of specific CK2 inhibitors. Next, using a panel of highly specific CK2 inhibitors, we studied the effects of hampering CK2 function in MMPCs. A dose-dependent cytotoxic effect was observed after the treatment with such compounds that was associated with the activation of both the extrinsic and intrinsic caspase-dependent pathways, the release from mitochondria of cytochrome c and smac/diablo and cell cycle arrest in G2-M. A possible role for CK2 inhibition in sensitising MMPCs to melphalan-induced apoptosis was also investigated. Indeed, CK2 blockade lowered the threshold of sensitivity of MMPCs to the cytotoxic effect of melphalan. We then looked at the consequences of CK2 blockade on the NF-κB dependent signaling cascade. Basal and TNF-α-dependent I-κB-αdegradation, as well as NF-κB transcriptional activity upon TNF-αstimulation, were partially impaired by CK2 blockade in MMPCs. Finally, we detected association between the endogenous αcatalytic subunit of CK2 and the NF-κB p50/p105 member by confocal microscopy and co-immunoprecipitation. Altogether, our data suggest a pivotal role for CK2 in controlling survival, proliferation and sensitivity to chemotherapeutics of MMPCs and implicate this kinase in the regulation of the NF-κB pathway in MM through the modulation of I-κB protein levels and NF-κB transcriptional activity. This latter effect is possibly exerted through physical association of CK2 with NF-κB transcription factors. Our findings also suggest that CK2 inhibition could be exploited as a novel therapeutic approach for MM.


1999 ◽  
Vol 9 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Ivonne Herrera-Teigeiro ◽  
Luis F. Jiménez-García ◽  
Jorge M. Vázquez-Ramos

AbstractThe cell cycle is regulated, at least partially, by protein phosphorylation, activity that is carried out by a series of calcium-independent protein kinases among which the p34cdc2kinase plays a preponderant role. The behaviour of p34cdc2-like protein kinase(s) has been followed during germination of maize in the presence or absence of the synthetic cytokinin benzyladenine (BA). Whereas there is an increase in p34cdc2-like kinase(s) activity at 15 h of germination in the presence of BA, coinciding with a peak of Ca2+-independent kinase activity, the amount of either the transcript for p34cdc2or of the corresponding protein(s) does not show much variation during the 0–24 h period of germination studied, whether the phytohormone is present or not. Benzyladenine stimulates the cell cycle and promotes an early mitosis during maize germination. We have found evidence that BA promotes the movement of the p34cdc2-like protein(s) to nuclei several hours before this takes place during germination of control seeds, and this may constitute part of the mechanism by which the phytohormone promotes cytokinesis in plants.


1994 ◽  
Vol 5 (8) ◽  
pp. 877-886 ◽  
Author(s):  
M F Hoekstra ◽  
N Dhillon ◽  
G Carmel ◽  
A J DeMaggio ◽  
R A Lindberg ◽  
...  

We have examined the activity and substrate specificity of the Saccharomyces cerevisiae Hrr25p and the Schizosaccharomyces pombe Hhp1, Hhp2, and Cki1 protein kinase isoforms. These four gene products are isotypes of casein kinase I (CKI), and the sequence of these protein kinases predicts that they are protein serine/threonine kinases. However, each of these four protein kinases, when expressed in Escherichia coli in an active form, was recognized by anti-phosphotyrosine antibodies. Phosphoamino acid analysis of 32P-labeled proteins showed phosphorylation on serine, threonine, and tyrosine residues. The E. coli produced forms of Hhp1, Hhp2, and Cki1 were autophosphorylated on tyrosine, and both Hhp1 and Hhp2 were capable of phosphorylating the tyrosine-protein kinase synthetic peptide substrate polymer poly-E4Y1. Immune complex protein kinases assays from S. pombe cells showed that Hhp1-containing precipitates were associated with a protein-tyrosine kinase activity, and the Hhp1 present in these immunoprecipitates was phosphorylated on tyrosine residues. Although dephosphorylation of Hhp1 and Hhp2 by Ser/Thr phosphatase had little effect on the specific activity, tyrosine dephosphorylation of Hhp1 and Hhp2 caused a 1.8-to 3.1-fold increase in the Km for poly-E4Y1 and casein. These data demonstrate that four different CKI isoforms from two different yeasts are capable of protein-tyrosine kinase activity and encode dual-specificity protein kinases.


1996 ◽  
Vol 16 (3) ◽  
pp. 998-1005 ◽  
Author(s):  
J Liu ◽  
Y Wu ◽  
G Z Ma ◽  
D Lu ◽  
L Haataja ◽  
...  

The first exon of the BCR gene encodes a new serine/threonine protein kinase. Abnormal fusion of the BCR and ABL genes, resulting from the formation of the Philadelphia chromosome (Ph), is the hallmark of Ph-positive leukemia. We have previously demonstrated that the Bcr protein is tyrosine phosphorylated within first-exon sequences by the Bcr-Abl oncoprotein. Here we report that in addition to tyrose 177 (Y-177), Y-360 and Y283 are phosphorylated in Bcr-Abl proteins in vitro. Moreover, Bcr tyrosine 360 is phosphorylated in vivo within both Bcr-Abl and Bcr. Bcr mutant Y177F had a greatly reduced ability to transphosphorylate casein and histone H1, whereas Bcr mutants Y177F and Y283F had wild-type activities. In contrast, the Y360F mutation had little effect on Bcr's autophosphorylation activity. Tyrosine-phosphorylated Bcr, phosphorylated in vitro by Bcr-Abl, was greatly inhibited in its serine/threonine kinase activity, impairing both auto- and transkinase activities of Bcr. Similarly, the isolation of Bcr from cells expressing Bcr-Abl under conditions that preserve phosphotyrosine residues also reduced Bcr's kinase activity. These results indicate that tyrosine 360 of Bcr is critical for the transphosphorylation activity of Bcr and that in Ph-positive leukemia, Bcr serine/threonine kinase activity is seriously impaired.


2014 ◽  
Author(s):  
Manas Ranjan Barik ◽  
Tripti Kaur Bagga ◽  
Anupam Bhattacharya ◽  
Bhagath Kumar Palaka ◽  
Kasi Viswanath Kotapati ◽  
...  

Lung cancer results when normal check and balance system of cell division is disrupted and ultimately the cells divide and proliferate in an uncontrollable manner forming a mass of cells in our body, known as tumor. Frequent mutations in Protein Kinase Domain alter the process of phosphorylation which results in abnormality in regulations of cell apoptosis and differentiation. Tyrosine Protein kinases and Serine/Threonine Protein Kinases are the two broad classes of protein kinases in accordance to their substrate specificity. The study of Tyrosine protein kinase and serine Kinase coding regions have the importance of sequence and structure determinants of cancer-causing mutations from mutation-dependent activation process. In the present study, we analyzed huge amounts of data extracted from various biological databases and NCBI. Out of the 534 proteins that may play a role in lung cancer, 71 proteins were selected that are likely to be actively involved in lung cancer. These proteins were evaluated by employing Multiple Sequence Alignment and a Phylogenetic tree was constructed using Neighbor-Joining Algorithm. From the constructed phylogenetic tree, protein kinase domain and motif study was performed. The results of this study revealed that the presence of Protein Kinase Domain and Tyrosine or Serine/Threonine Kinase signatures in some of the proteins are mutated, which play a dominant role in the pathogenesis of Lung Cancer and these may be addressed with the help of inhibitors to develop an efficient anticancer drugs. Furthermore, the present study contributes to the possibility that genetic components are more important in Lung Cancer as compared to environmental and smoking(carcinogens) factors.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3864-3864
Author(s):  
Daniel Thomas ◽  
Joanna Woodcock ◽  
Jason A Powell ◽  
Emma F Barry ◽  
Angel F Lopez ◽  
...  

Abstract New therapeutic approaches to acute myeloid leukemia (AML) must ultimately target cell survival pathways in leukemic cells in order to be effective. We have identified a serine residue (Ser585) in the cytoplasmic domain of the common GM-CSF and IL-3 receptor beta subunit which is phosphorylated in response to sub-picomolar concentrations of growth factor and is involved in signalling cytokine-mediated survival via 14-3-3 zeta phosphoserine adaptor. While Serine 585 is tightly controlled in non-transformed haematopoietic cells from normal donors, Serine 585 is constitutively phosphorylated in AML blasts suggesting a role in AML cell survival and a novel target for anti-leukaemic therapy. We attempted to isolate Ser585 kinase activity from leukemic blasts and characterise this activity in response to serine/threonine kinase inhibitors in biochemical and biological assays. Results: Cell extracts from primary AML blasts (>99% blasts by flow/morphology) obtained from adult patients were fractionated and assayed for intrinsic serine 585 peptide (13-mer) kinase activity via 32P gamma-ATP in vitro kinase assay. A single peak of Ser585 kinase activity was isolated and tested against a panel of serine/threonine kinase inhibitors. Kinase activity was selectively sensitive to LY294002, wortmannin and quercelin suggesting a role for the PI3K family of kinases in activating this residue. Ser585 kinase activity was also directly present in both p85 and p110 alpha PI3K immunoprecipitates from AML blasts and leukemic cell lines tested on both Ser585 peptide and recombinant beta cytoplasmic domain protein substrates. Serine 585 phosphorylation induced by sub-picomolar concentrations of GM-CSF in TF1.8 cells was inhibited by three different isoform selective p110 alpha inhibitors used at low nanomolar ranges consistent with reported IC50s. These results suggest a novel role for protein kinase rather than lipid kinase activity of PI3K alpha subunit in low dose cytokine signalling. We also show induction of serine phosphorylation of p85 PI3K regulatory subunit on Ser608 by GM-CSF, a previously reported protein substrate of PI3K. Furthermore, p110 alpha and delta inhibitors abrogate GM-CSF dependent survival of murine lineage negative bone marrow progenitor cells and also exert apoptotic activity on flow-sorted CD34+CD38−CD123+ sub-populations of primary AML blasts. Conclusions: Inhibition of Ser585 phosphorylation by targetting PI3K protein kinase activity by isoform selective inhibitors represents a novel approach toward the eradication of residual leukemic stem cells.


2018 ◽  
Vol 19 (10) ◽  
pp. 3031 ◽  
Author(s):  
Mohamed Elbadawy ◽  
Tatsuya Usui ◽  
Hideyuki Yamawaki ◽  
Kazuaki Sasaki

Death associated protein kinase (DAPK) is a calcium/calmodulin-regulated serine/threonine kinase; its main function is to regulate cell death. DAPK family proteins consist of DAPK1, DAPK2, DAPK3, DAPK-related apoptosis-inducing protein kinases (DRAK)-1 and DRAK-2. In this review, we discuss the roles and regulatory mechanisms of DAPK family members and their relevance to diseases. Furthermore, a special focus is given to several reports describing cross-talks between DAPKs and mitogen-activated protein kinases (MAPK) family members in various pathologies. We also discuss small molecule inhibitors of DAPKs and their potential as therapeutic targets against human diseases.


2014 ◽  
Author(s):  
Manas Ranjan Barik ◽  
Tripti Kaur Bagga ◽  
Anupam Bhattacharya ◽  
Bhagath Kumar Palaka ◽  
Kasi Viswanath Kotapati ◽  
...  

Lung cancer results when normal check and balance system of cell division is disrupted and ultimately the cells divide and proliferate in an uncontrollable manner forming a mass of cells in our body, known as tumor. Frequent mutations in Protein Kinase Domain alter the process of phosphorylation which results in abnormality in regulations of cell apoptosis and differentiation. Tyrosine Protein kinases and Serine/Threonine Protein Kinases are the two broad classes of protein kinases in accordance to their substrate specificity. The study of Tyrosine protein kinase and serine Kinase coding regions have the importance of sequence and structure determinants of cancer-causing mutations from mutation-dependent activation process. In the present study, we analyzed huge amounts of data extracted from various biological databases and NCBI. Out of the 534 proteins that may play a role in lung cancer, 71 proteins were selected that are likely to be actively involved in lung cancer. These proteins were evaluated by employing Multiple Sequence Alignment and a Phylogenetic tree was constructed using Neighbor-Joining Algorithm. From the constructed phylogenetic tree, protein kinase domain and motif study was performed. The results of this study revealed that the presence of Protein Kinase Domain and Tyrosine or Serine/Threonine Kinase signatures in some of the proteins are mutated, which play a dominant role in the pathogenesis of Lung Cancer and these may be addressed with the help of inhibitors to develop an efficient anticancer drugs. Furthermore, the present study contributes to the possibility that genetic components are more important in Lung Cancer as compared to environmental and smoking(carcinogens) factors.


Sign in / Sign up

Export Citation Format

Share Document