scholarly journals Mapping in vivo associations of cytoplasmic proteins with integrin beta 1 cytoplasmic domain mutants.

1995 ◽  
Vol 6 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J M Lewis ◽  
M A Schwartz

Integrins promote formation of focal adhesions and trigger intracellular signaling pathways through cytoplasmic proteins such as talin, alpha-actinin, and focal adhesion kinase (FAK). The beta 1 integrin subunit has been shown to bind talin and alpha-actinin in in vitro assays, and these proteins may link integrin to the actin cytoskeleton either directly or through linkages to other proteins such as vinculin. However, it is unknown which of these associations are necessary in vivo for formation of focal contacts, or which regions of beta 1 integrin bind to specific cytoskeletal proteins in vivo. We have developed an in vivo assay to address these questions. Microbeads were coated with anti-chicken beta 1 antibodies to selectively cluster chicken beta 1 integrins expressed in cultured mouse fibroblasts. The ability of cytoplasmic domain mutant beta 1 integrins to induce co-localization of proteins was assessed by immunofluorescence and compared with that of wild-type integrin. As expected, mutant beta 1 lacking the entire cytoplasmic domain had a reduced ability to induce co-localization of talin, alpha-actinin, F-actin, vinculin, and FAK. The ability of beta 1 integrin to co-localize talin and FAK was found to require a sequence near the C-terminus of beta 1. The region of beta 1 required to co-localize alpha-actinin was found to reside in a different sequence, several amino acids further from the C-terminus of beta 1. Deletion of 13 residues from the C-terminus blocked co-localization of talin, FAK, and actin, but not alpha-actinin. Association of alpha-actinin with clustered integrin is therefore not sufficient to induce the co-localization of F-actin.

2002 ◽  
Vol 368 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Mark D. BASS ◽  
Martin J. HUMPHRIES

Syndecan-4 is a ubiquitous transmembrane proteoglycan that localizes to the focal adhesions of adherent cells and binds to a range of extracellular ligands, including growth factors and extracellular-matrix proteins. Engagement of syndecan-4 is essential for adhesion formation in cells adhering via certain integrins, and for cell proliferation and migration in response to growth factors. The cytoplasmic domain of syndecan-4 interacts with a number of signalling and structural proteins, and both extracellular and cytoplasmic domains are necessary for regulated activation of associated transmembrane receptors. PDZ domain-containing scaffold proteins (syntenin and CASK) bind to the C-terminus of the syndecan-4 cytoplasmic domain and co-ordinate clustering of receptors and connection to the actin cytoskeleton. Syndecan-4 also binds and activates protein kinase Cα in the presence of phosphatidylinositol 4,5-bisphosphate, and regulates signalling by Rho-family GTPases and focal adhesion kinase. This review discusses the cytoplasmic interactions of syndecan-4 and how they affect cell behaviour as a consequence of the interaction with extracellular ligands. These conclusions also offer an insight into the role of syndecan-4 in vivo, and are consistent with phenotypes generated as a consequence of abnormal syndecan-4 expression in pathologies and gene disruption studies.


1992 ◽  
Vol 118 (4) ◽  
pp. 951-959 ◽  
Author(s):  
F G Giancotti ◽  
M A Stepp ◽  
S Suzuki ◽  
E Engvall ◽  
E Ruoslahti

The alpha 6 beta 4 integrin is a receptor involved in the interaction of epithelial cells with basement membranes. This integrin is unique among the known integrins in that its beta 4 subunit has a large cytoplasmic domain. The function of this cytoplasmic domain is not known. In this paper we show that the beta 4 subunit undergoes proteolytic processing in cultured cells and provide evidence that this also happens in tissues. Immunoprecipitation experiments indicated that the cytoplasmic domain of beta 4 is susceptible to a calcium-dependent protease present in cellular extracts. In vitro assays with purified calpain showed that this enzyme can cleave beta 4 at two distinct sites in the cytoplasmic domain, generating truncated molecules of 165 and 130 kD. Immunoblotting experiments performed on cultured epithelial cells using an antibody to a peptide modeled after the COOH-terminus of the beta 4 subunit showed 70-kD fragments and several fragments of molecular masses between 185 and 115 kD. Similar fragments were detected in CHO cells transfected with the full-length beta 4 cDNA, but not in control transfected cells or in cells transfected with a mutant cDNA lacking the epitope of the cytoplasmic peptide antibody. The sizes of the fragments indicated that both the intracellular and extracellular domains of beta 4 are proteolytically processed. To examine the processing of the beta 4 subunit in epithelial tissues in vivo, human skin frozen sections were stained with antibodies to the ectodomain or the cytoplasmic domain of beta 4. The distinct staining patterns obtained with the two types of antibodies provided evidence that beta 4 is proteolytically processed in vivo in skin. Analogous experiments performed on sections of the cornea suggested that beta 4 is not proteolytically processed at a detectable level in this tissue. Thus, cleavage of the beta 4 subunit occurs in a tissue-specific fashion. These results suggest a potential mechanism of modulating the activities of the alpha 6 beta 4 integrin.


1996 ◽  
Vol 44 (2) ◽  
pp. 91-101 ◽  
Author(s):  
A K Berfield ◽  
G J Raugi ◽  
C K Abrass

Mesangial cells (MCs) grown without supplemental insulin (SI-MCs) express a quiescent phenotype and extracellular matrix (ECM) composition similar to MCs in vivo. In contrast, MCs routinely propagated in insulin (SI+MCs) are stimulated to proliferate, change their phenotype, and produce large amounts of collagens I and III. These effects of insulin may in part be mediated through cytoskeletal rearrangement. Differences in cytoskeletal arrangement were compared between SI-MCs and SI+MCs and 1 hr after addition of insulin (1 nM) or IGF-1 (100 nM) to SI-MCs. Cells were examined by light microscopy, electron microscopy, and immunostaining for specific cytoskeletal proteins and fibronectin. Insulin induced rapid rearrangement of stress fibers. Surface ruffling, actin aggregation, vimentin retraction, rearrangement of vinculin in focal adhesions, and fibronectin extraction were apparent. These direct effects of insulin on the SI-MC cytoskeleton occurred before insulin-induced changes in ECM composition. IGF-I induced cytoskeletal reorganization distinct from insulin. These observations demonstrate that insulin and IGF-I have unique effects on the MC cytoskeleton, which is turn may mediate secondary ligand effects on MCs.


1990 ◽  
Vol 96 (2) ◽  
pp. 197-205
Author(s):  
M. Guo ◽  
K. Toda ◽  
F. Grinnell

The purpose of our studies was to learn more about the regulation of keratinocyte migration. Human keratinocytes freshly harvested from skin were relatively immotile cells, whereas keratinocytes harvested from cell culture migrated on type I collagen or fibronectin as measured in a phagokinesis assay. Development of migratory competence by keratinocytes varied depending on the culture substratum. Cells cultured on plastic were activated more quickly and to a greater extent than cells cultured on dermis. The effect of the culture substratum on migratory competence was reversible. That is, cells cultured on plastic showed reduced activity after subculture on dermis. Cells cultured on dermis showed increased activity after subculture on plastic. Freshly isolated as well as cultured keratinocytes contained beta 1 integrin subunits, but only cultured cells were able to organize the subunits into focal adhesions. These adhesion sites also contained vinculin. In epidermal explants, beta 1 integrin subunits were mostly in basal cells, often more prominent between lateral cell borders than at the epidermal-dermal interface. In keratinocytes that migrated out of skin explants, there appeared to be an increase in the intensity of beta 1 integrin subunit immunostaining, possibly because of the change in shape of migrating cells. Also, beta 1 integrin subunits were found around and beneath migrating keratinocytes. These results show that changes in the distribution of beta 1 integrin subunits accompany development of migratory competence.


1997 ◽  
Vol 110 (2) ◽  
pp. 169-178 ◽  
Author(s):  
P. Sanchez-Aparicio ◽  
A.M. Martinez de Velasco ◽  
C.M. Niessen ◽  
L. Borradori ◽  
I. Kuikman ◽  
...  

The high molecular mass protein, HD1, is a structural protein present in hemidesmosomes as well as in distinct adhesion structures termed type II hemidesmosomes. We have studied the distribution and expression of HD1 in the GD25 cells, derived from murine embryonal stem cells deficient for the beta 1 integrin subunit. We report here that these cells possess HD1 but not BP230 or BP180; two other hemidesmosomal constituents, and express only traces of the alpha 6 beta 4 integrin. By immunofluorescence and interference reflection microscopy HD1 was found together with vinculin at the end of actin filaments in focal contacts. In OVCAR-4 cells, derived from a human ovarian carcinoma which, like GD25 cells, only weakly express alpha 6 beta 4, HD1 was also localized in focal contacts. Upon transfection of both GD25 and OVCAR-4 cells with cDNA for the human beta 4 subunit the subcellular distribution of HD1 changed significantly. HD1 is then no longer present in focal contacts but in other structures at cell-substrate contacts, colocalized with alpha 6 beta 4. These junctional complexes are probably the equivalent of the type II hemidesmosomes. Transfection of GD25 cells with beta 1 cDNA did not affect the distribution of HD1, which indicates that the localization of HD1 in focal contacts was not due to the absence of beta 1. Moreover, in GD25 cells transfected with cDNA encoding a beta 4/beta 1 chimera, in which the cytoplasmic domain of beta 4 was replaced by that of beta 1, the distribution of HD1 was unaffected. Our findings indicate that the cytoplasmic domain of beta 4 determines the subcellular distribution of HD1 and emphasize the important role of alpha 6 beta 4 in the assembly of hemidesmosomes and other junctional adhesive complexes containing HD1.


1993 ◽  
Vol 106 (2) ◽  
pp. 579-589 ◽  
Author(s):  
Z.Z. Bao ◽  
M. Lakonishok ◽  
S. Kaufman ◽  
A.F. Horwitz

Immunization against a 70 kDa band that co-purifies with skeletal muscle integrins has resulted in an antibody directed against the avain alpha 7 integrin subunit. The specificity of the antibody was established by patterns of tissue staining and cross-reactivity with antibodies directed against the cytoplasmic domain of the rat alpha 7 cytoplasmic domain. On sections of adult skeletal muscle the alpha 7 integrin was enriched in the myotendinous junction (MTJ). This localization was unique as neither the alpha 1, alpha 3, alpha 5, alpha 6 and alpha v subunit localizes in the myotendinous junction. The distribution of the alpha 7 subunit in the MTJ was examined during embryonic development. alpha 7 expression in the junction is first apparent around embryo day 14 and is almost exclusively at the developing MTJ at this stage. alpha 3 is expressed with distinctive punctate staining around the junctional area in earlier embryos (11-day). The time of appearance of the alpha 7 subunit in the MTJ correlates with the insertion of myofibrils into subsarcolemmal densities and folding of the junctional membrane, suggesting a role of the alpha 7 integrin in this process. Vinculin is present throughout development of the myotendinous junction, suggesting that the alpha 7 integrin recognizes a preformed cytoskeletal structure. The presence of the alpha 7 subunit in the myotendinous junction and the alpha 5 subunit in the adhesion plaque demonstrates a molecular difference between these two adherens junctions. It also points to possible origins of junctional specificity on muscle. Differences between these two junctions were developed further using an antibody against phosphotyrosine (PY20). Phosphotyrosine is thought to participate in the organization and stabilization of adhesions. The focal adhesion and the neuromuscular junction, but not the MTJ, contained proteins phosphorylated on tyrosine.


Development ◽  
1994 ◽  
Vol 120 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Y. Grinblat ◽  
S. Zusman ◽  
G. Yee ◽  
R.O. Hynes ◽  
F.C. Kafatos

Integrins constitute a family of membrane-spanning, heterodimeric proteins that mediate adhesive interactions between cells and surrounding extracellular matrices (or other cells) and participate in signal transduction. We are interested in assessing integrin functions in the context of developing Drosophila melanogaster. This report, using mutants of the beta PS subunit encoded by the myospheroid (mys) locus, analyzes the relationships between integrin protein structure and developmental functions in an intact organism. As a first step in this analysis, we demonstrated the ability of a fragment of wild-type mys genomic DNA, introduced into the germ line in a P-element vector P[mys+], to rescue phenotypes attributed to lack of (or defects in) the endogenous beta PS during several discrete morphogenetic events. We then produced in vitro a series of modifications of the wild-type P[mys+] transposon, which encode beta PS derivatives with mutations within the small and highly conserved cytoplasmic domain. In vivo analysis of these mutant transposons led to the following conclusions. (1) The cytoplasmic tail of beta PS is essential for all developmental functions of the protein that were assayed. (2) An intron at a conserved position in the DNA sequence encoding the cytoplasmic tail is thought to participate in important alternative splicing events in vertebrate beta integrin subunit genes, but is not required for the developmental functions of the mys gene assayed here. (3) Phosphorylation on two conserved tyrosines found in the C terminus of the beta PS cytoplasmic tail is not necessary for the tested developmental functions. (4) Four highly conserved amino acid residues found in the N-terminal portion of the cytoplasmic tail are important but not critical for the developmental functions of beta PS; furthermore, the efficiencies with which these mutant proteins function during different morphogenetic processes vary greatly, strongly suggesting that the cytoplasmic interactions involving PS integrins are developmentally modulated.


2004 ◽  
Vol 378 (3) ◽  
pp. 1007-1014 ◽  
Author(s):  
Eunyoung KEUM ◽  
Yeonhee KIM ◽  
Jungyean KIM ◽  
Soojin KWON ◽  
Yangmi LIM ◽  
...  

During cell–matrix adhesion, syndecan-4 transmembrane heparan sulphate proteoglycan plays a critical role in the formation of focal adhesions and stress fibres. We have shown previously that the syndecan-4 cytoplasmic domain directly binds to and activates PKC-α (protein kinase C-α) in vitro [Oh, Woods and Couchman (1997) J. Biol. Chem. 272, 8133–8136]. However, whether syndecan-4 has the same activity in vivo needs to be addressed. Using mammalian two-hybrid assays, we showed that syndecan-4 interacted with PKC-α in vivo and that this interaction was mediated through syndecan-4 cytoplasmic domain. Furthermore, the activation of PKC increased the extent of interaction between syndecan-4 and PKC-α. Overexpression of syndecan-4, but not a mutant lacking its cytoplasmic domain, specifically increased the level of endogenous PKC-α and enhanced the translocation of PKC-α into both detergent-insoluble and membrane fractions. In addition, rat embryo fibroblasts overexpressing syndecan-4 exhibited a slowed down-regulation of PKC-α in response either to a prolonged treatment with PMA or to maintaining cells in suspension culture. PKC-α immunocomplex kinase assays also showed that syndecan-4 overexpression increased the activity of membrane PKC-α. Taken together, these results suggest that syndecan-4 interacts with PKC-α in vivo and regulates its localization, activity and stability.


2001 ◽  
Vol 356 (1) ◽  
pp. 233-240 ◽  
Author(s):  
Klemens LÖSTER ◽  
Dörte VOSSMEYER ◽  
Werner HOFMANN ◽  
Werner REUTTER ◽  
Kerstin DANKER

Integrins are heterodimeric adhesion receptors consisting of α- and β-subunits capable of binding extracellular matrix molecules as well as other adhesion receptors on neighbouring cells. These interactions induce various signal transduction pathways in many cell types, leading to cytoskeletal reorganization, phosphorylation and induction of gene expression. Integrin ligation leads to cytoplasmic protein–protein interactions requiring both integrin cytoplasmic domains, and these domains are initiation points for focal adhesion formation and subsequent signal transduction cascades. In previous studies we have shown that the very short cytoplasmic α1 tail is required for post-ligand events, such as cell spreading as well as actin stress-fibre formation. In the present paper we report that cells lacking the cytoplasmic domain of the α1 integrin subunit are unable to form proper focal adhesions and that phosphorylation on tyrosine residues of focal adhesion components is reduced on α1β1-specific substrates. The α1 cytoplasmic sequence is a specific recognition site for focal adhesion components like paxillin, talin, α-actinin and pp125FAK. It seems to account for α1-specific signalling, since when peptides that mimic the cytoplasmic domain of α1 are transferred into cells, they influence α1β1-specific adhesion, presumably by competing for binding partners. For α1 integrin/protein binding, the conserved Lys-Ile-Gly-Phe-Phe-Lys-Arg motif and, in particular, the two lysine residues, are important.


1995 ◽  
Vol 129 (4) ◽  
pp. 1155-1164 ◽  
Author(s):  
F M Pavalko ◽  
D M Walker ◽  
L Graham ◽  
M Goheen ◽  
C M Doerschuk ◽  
...  

The leukocyte adhesion molecule L-selectin mediates binding to lymph node high endothelial venules (HEV) and contributes to leukocyte rolling on endothelium at sites of inflammation. Previously, it was shown that truncation of the L-selectin cytoplasmic tail by 11 amino acids abolished binding to lymph node HEV and leukocyte rolling in vivo, but the molecular basis for that observation was not determined. This study examined potential interactions between L-selectin and cytoskeletal proteins. We found that the cytoplasmic domain of L-selectin interacts directly with the cytoplasmic actin-binding protein alpha-actinin and forms a complex with vinculin and possibly talin. Solid phase binding assays using the full-length L-selectin cytoplasmic domain bound to microtiter wells demonstrated direct, specific, and saturable binding of purified alpha-actinin to L-selectin (Kd = 550 nM), but no direct binding of purified talin or vinculin. Interestingly, talin potentiated binding of alpha-actinin to the L-selectin cytoplasmic domain peptide despite the fact that direct binding of talin to L-selectin could not be measured. Vinculin binding to the L-selectin cytoplasmic domain peptide was detectable only in the presence of alpha-actinin. L-selectin coprecipitated with a complex of cytoskeletal proteins including alpha-actinin and vinculin from cells transfected with L-selectin, consistent with the possibility that alpha-actinin binds directly to L-selectin and that vinculin associates by binding to alpha-actinin in vivo to link actin filaments to the L-selectin cytoplasmic domain. In contrast, a deletion mutant of L-selectin lacking the COOH-terminal 11 amino acids of the cytoplasmic domain failed to coprecipitate with alpha-actinin or vinculin. Surprisingly, this mutant L-selectin localized normally to the microvillar projections on the cell surface. These data suggest that the COOH-terminal 11 amino acids of the L-selectin cytoplasmic domain are required for mediating interactions with the actin cytoskeleton via a complex of alpha-actinin and vinculin, but that this portion of the cytoplasmic domain is not necessary for proper localization of L-selectin on the cell surface. Correct L-selectin receptor positioning is therefore insufficient for leukocyte adhesion mediated by L-selectin, suggesting that this adhesion may also require direct interactions with the cytoskeleton.


Sign in / Sign up

Export Citation Format

Share Document