scholarly journals Modulation of In Vivo Migratory Function of α2β1 Integrin in Mouse Liver

1997 ◽  
Vol 8 (10) ◽  
pp. 1863-1875 ◽  
Author(s):  
Wai-chi Ho ◽  
Christine Heinemann ◽  
Dolores Hangan ◽  
Shashi Uniyal ◽  
Vincent L. Morris ◽  
...  

We report herein that expression of α2β1 integrin increased human erythroleukemia K562 transfectant (KX2C2) cell movement after extravasation into liver parenchyma. In contrast, a previous study demonstrated that α2β1 expression conferred a stationary phenotype to human rhabdomyosarcoma RD transfectant (RDX2C2) cells after extravasation into the liver. We therefore assessed the adhesive and migratory function of α2β1 on KX2C2 and RDX2C2 cells using a α2β1-specific stimulatory monoclonal antibody (mAb), JBS2, and a blocking mAb, BHA2.1. In comparison with RDX2C2 cells, KX2C2 were only weakly adherent to collagen and laminin. JBS2 stimulated α2β1-mediated interaction of KX2C2 cells with both collagen and laminin resulting in increases in cell movement on both matrix proteins. In the presence of Mn2+, JBS2-stimulated adhesion on collagen beyond an optimal level for cell movement. In comparison, an increase in RDX2C2 cell movement on collagen required a reduction in its adhesive strength provided by the blocking mAb BHA2.1. Consistent with these in vitro findings, in vivo videomicroscopy revealed that α2β1-mediated postextravasation cell movement of KX2C2 cells in the liver tissue could also be stimulated by JBS2. Thus, results demonstrate that α2β1 expression can modulate postextravasation cell movement by conferring either a stationary or motile phenotype to different cell types. These findings may be related to the differing metastatic activities of different tumor cell types.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3389
Author(s):  
Ishtiaq Ahmed ◽  
Saif Ur Rehman ◽  
Shiva Shahmohamadnejad ◽  
Muhammad Anjum Zia ◽  
Muhammad Ahmad ◽  
...  

In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer—both in vivo and in vitro clinical trials—has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents.


RMD Open ◽  
2018 ◽  
Vol 4 (2) ◽  
pp. e000744 ◽  
Author(s):  
Kerstin Klein

The reading of acetylation marks on histones by bromodomain (BRD) proteins is a key event in transcriptional activation. Small molecule inhibitors targeting bromodomain and extra-terminal (BET) proteins compete for binding to acetylated histones. They have strong anti-inflammatory properties and exhibit encouraging effects in different cell types in vitro and in animal models resembling rheumatic diseases in vivo. Furthermore, recent studies that focus on BRD proteins beyond BET family members are discussed.


2017 ◽  
Vol 216 (10) ◽  
pp. 3405-3422 ◽  
Author(s):  
Vasja Urbančič ◽  
Richard Butler ◽  
Benjamin Richier ◽  
Manuel Peter ◽  
Julia Mason ◽  
...  

Filopodia have important sensory and mechanical roles in motile cells. The recruitment of actin regulators, such as ENA/VASP proteins, to sites of protrusion underlies diverse molecular mechanisms of filopodia formation and extension. We developed Filopodyan (filopodia dynamics analysis) in Fiji and R to measure fluorescence in filopodia and at their tips and bases concurrently with their morphological and dynamic properties. Filopodyan supports high-throughput phenotype characterization as well as detailed interactive editing of filopodia reconstructions through an intuitive graphical user interface. Our highly customizable pipeline is widely applicable, capable of detecting filopodia in four different cell types in vitro and in vivo. We use Filopodyan to quantify the recruitment of ENA and VASP preceding filopodia formation in neuronal growth cones, and uncover a molecular heterogeneity whereby different filopodia display markedly different responses to changes in the accumulation of ENA and VASP fluorescence in their tips over time.


2000 ◽  
Vol 276 (15) ◽  
pp. 11552-11558 ◽  
Author(s):  
Janet Fawcett ◽  
Frederick G. Hamel ◽  
Robert G. Bennett ◽  
Zoltan Vajo ◽  
William C. Duckworth

In adult animals, the major effect of insulin on protein turnover is inhibition of protein degradation. Cellular protein degradation is under the control of multiple systems, including lysosomes, proteasomes, calpains, and giant protease. Insulin has been shown to alter proteasome activityin vitroandin vivo. We examined the inhibition of protein degradation by insulin and insulin analogues (LysB28,ProB29-insulin (LysPro), AspB10-insulin (B10), and GluB4,GlnB16,PheB17-insulin (EQF)) in H4, HepG2, and L6 cells. These effects were compared with receptor binding. Protein degradation was examined by release of trichloroacetic acid-soluble radioactivity from cells previously labeled with [3H]leucine. Short- and intermediate-lived proteins were examined. H4 cells bound insulin with an EC50of 4.6 × 10−9m. LysPro was similar. The affinity of B10 was increased 2-fold; that of EQF decreased 15-fold. Protein degradation inhibition in H4 cells was highly sensitive to insulin (EC50= 4.2 × 10−11and 1.6 × 10−10m, short- and intermediate-lived protein degradation, respectively) and analogues. Despite similar binding, LysPro was 11- to 18-fold more potent than insulin at inhibiting protein degradation. Conversely, although EQF showed lower binding to H4 cells than insulin, its action was similar. The relative binding potencies of analogues in HepG2 cells were similar to those in H4 cells. Examination of protein degradation showed insulin, LysPro, and B10 were equivalent while EQF was less potent. L6 cells showed no difference in the binding of the analogues compared with insulin, but their effect on protein degradation was similar to that seen in HepG2 cells except B10 inhibited intermediate-lived protein degradation better than insulin. These studies illustrate the complexities of cellular protein degradation and the effects of insulin. The effect of insulin and analogues on protein degradation vary significantly in different cell types and with different experimental conditions. The differences seen in the action of the analogues cannot be attributed to binding differences. Post-receptor mechanisms, including intracellular processing and degradation, must be considered.


2018 ◽  
Vol 14 (2) ◽  
Author(s):  
PuXue Qiao ◽  
Christina Mølck ◽  
Davide Ferrari ◽  
Frédéric Hollande

AbstractMulticolor cell spatio-temporal image data have become important to investigate organ development and regeneration, malignant growth or immune responses by tracking different cell types both in vivo and in vitro. Statistical modeling of image data from common longitudinal cell experiments poses significant challenges due to the presence of complex spatio-temporal interactions between different cell types and difficulties related to measurement of single cell trajectories. Current analysis methods focus mainly on univariate cases, often not considering the spatio-temporal effects affecting cell growth between different cell populations. In this paper, we propose a conditional spatial autoregressive model to describe multivariate count cell data on the lattice, and develop inference tools. The proposed methodology is computationally tractable and enables researchers to estimate a complete statistical model of multicolor cell growth. Our methodology is applied on real experimental data where we investigate how interactions between cancer cells and fibroblasts affect their growth, which are normally present in the tumor microenvironment. We also compare the performance of our methodology to the multivariate conditional autoregressive (MCAR) model in both simulations and real data applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Mayra Silva Miranda ◽  
Adrien Breiman ◽  
Sophie Allain ◽  
Florence Deknuydt ◽  
Frederic Altare

One of the main features of the immune response toM. Tuberculosisis the formation of an organized structure called granuloma. It consists mainly in the recruitment at the infectious stage of macrophages, highly differentiated cells such as multinucleated giant cells, epithelioid cells and Foamy cells, all these cells being surrounded by a rim of lymphocytes. Although in the first instance the granuloma acts to constrain the infection, some bacilli can actually survive inside these structures for a long time in a dormant state. For some reasons, which are still unclear, the bacilli will reactivate in 10% of the latently infected individuals, escape the granuloma and spread throughout the body, thus giving rise to clinical disease, and are finally disseminated throughout the environment. In this review we examine the process leading to the formation of the granulomatous structures and the different cell types that have been shown to be part of this inflammatory reaction. We also discuss the differentin vivoandin vitromodels available to study this fascinating immune structure.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Christophe Michel Raynaud ◽  
Arash Rafii

Cell therapy has emerged as a potential therapeutic strategy in regenerative disease. Among different cell types, mesenchymal stem/stromal cells have been wildly studiedin vitro,in vivoin animal models and even used in clinical trials. However, while clinical applications continue to increase markedly, the understanding of their physiological properties and interactions raises many questions and drives the necessity of more caution and supervised strategy in their use.


2003 ◽  
Vol 83 (3) ◽  
pp. 871-932 ◽  
Author(s):  
PAMELA L. TUMA ◽  
ANN L. HUBBARD

Tuma, Pamela L., and Ann L. Hubbard. Transcytosis: Crossing Cellular Barriers. Physiol Rev 83: 871–932, 2003; 10.1152/physrev.00001.2003.—Transcytosis, the vesicular transport of macromolecules from one side of a cell to the other, is a strategy used by multicellular organisms to selectively move material between two environments without altering the unique compositions of those environments. In this review, we summarize our knowledge of the different cell types using transcytosis in vivo, the variety of cargo moved, and the diverse pathways for delivering that cargo. We evaluate in vitro models that are currently being used to study transcytosis. Caveolae-mediated transcytosis by endothelial cells that line the microvasculature and carry circulating plasma proteins to the interstitium is explained in more detail, as is clathrin-mediated transcytosis of IgA by epithelial cells of the digestive tract. The molecular basis of vesicle traffic is discussed, with emphasis on the gaps and uncertainties in our understanding of the molecules and mechanisms that regulate transcytosis. In our view there is still much to be learned about this fundamental process.


2020 ◽  
pp. jlr.TR120000806 ◽  
Author(s):  
Raju V. S. Rajala

The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (PIs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of PI kinases and PI phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule phosphatidylinositol. PI signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane binding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIs in general, in this review, we discuss recent studies and advances in PI lipid signaling in the retina. We specifically focus on PI lipids from vertebrate (e.g. bovine, rat, mice, toad, and zebrafish) and invertebrate (e.g. drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIs revealed from animal models and human diseases, and methods to study PI levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PI-modifying enzymes/phosphatases and further unravel PI regulation and function in the different cell types of the retina.


Sign in / Sign up

Export Citation Format

Share Document