scholarly journals Long-Term Self-Renewal of Postnatal Muscle-derived Stem Cells

2005 ◽  
Vol 16 (7) ◽  
pp. 3323-3333 ◽  
Author(s):  
B. M. Deasy ◽  
B. M. Gharaibeh ◽  
J. B. Pollett ◽  
M. M. Jones ◽  
M. A. Lucas ◽  
...  

The ability to undergo self-renewal is a defining characteristic of stem cells. Self-replenishing activity sustains tissue homeostasis and regeneration. In addition, stem cell therapy strategies require a heightened understanding of the basis of the self-renewal process to enable researchers and clinicians to obtain sufficient numbers of undifferentiated stem cells for cell and gene therapy. Here, we used postnatal muscle-derived stem cells to test the basic biological assumption of unlimited stem cell replication. Muscle-derived stem cells (MDSCs) expanded for 300 population doublings (PDs) showed no indication of replicative senescence. MDSCs preserved their phenotype (ScaI+/CD34+/desminlow) for 200 PDs and were capable of serial transplantation into the skeletal muscle of mdx mice, which model Duchenne muscular dystrophy. MDSCs expanded to this level exhibited high skeletal muscle regeneration comparable with that exhibited by minimally expanded cells. Expansion beyond 200 PDs resulted in lower muscle regeneration, loss of CD34 expression, loss of myogenic activity, and increased growth on soft agar, suggestive of inevitable cell aging attributable to expansion and possible transformation of the MDSCs. Although these results raise questions as to whether cellular transformations derive from cell culturing or provide evidence of cancer stem cells, they establish the remarkable long-term self-renewal and regeneration capacity of postnatal MDSCs.

2000 ◽  
Vol 150 (5) ◽  
pp. 1085-1100 ◽  
Author(s):  
Joon Yung Lee ◽  
Zhuqing Qu-Petersen ◽  
Baohong Cao ◽  
Shigemi Kimura ◽  
Ron Jankowski ◽  
...  

Several recent studies suggest the isolation of stem cells in skeletal muscle, but the functional properties of these muscle-derived stem cells is still unclear. In the present study, we report the purification of muscle-derived stem cells from the mdx mouse, an animal model for Duchenne muscular dystrophy. We show that enrichment of desmin+ cells using the preplate technique from mouse primary muscle cell culture also enriches a cell population expressing CD34 and Bcl-2. The CD34+ cells and Bcl-2+ cells were found to reside within the basal lamina, where satellite cells are normally found. Clonal isolation and characterization from this CD34+Bcl-2+ enriched population yielded a putative muscle-derived stem cell, mc13, that is capable of differentiating into both myogenic and osteogenic lineage in vitro and in vivo. The mc13 cells are c-kit and CD45 negative and express: desmin, c-met and MNF, three markers expressed in early myogenic progenitors; Flk-1, a mouse homologue of KDR recently identified in humans as a key marker in hematopoietic cells with stem cell-like characteristics; and Sca-1, a marker for both skeletal muscle and hematopoietic stem cells. Intramuscular, and more importantly, intravenous injection of mc13 cells result in muscle regeneration and partial restoration of dystrophin in mdx mice. Transplantation of mc13 cells engineered to secrete osteogenic protein differentiate in osteogenic lineage and accelerate healing of a skull defect in SCID mice. Taken together, these results suggest the isolation of a population of muscle-derived stem cells capable of improving both muscle regeneration and bone healing.


2016 ◽  
Author(s):  
Floriane Lacour ◽  
Elsa Vezin ◽  
Florian Bentzinger ◽  
Marie-Claude Sincennes ◽  
Robert D. Mitchell ◽  
...  

SUMMARYTissue regeneration requires the selective activation and repression of specific signaling pathways in stem cells. As such, the Wnt signaling pathways have been shown to control stem cell fate. In many cell types, the R-Spondin (Rspo) family of secreted proteins acts as potent activators of the canonical Wnt/β-catenin pathway. Here, we identify Rspo1 as a mediator of skeletal muscle tissue repair. Firstly we show that Rspo1-null muscles do not display any abnormalities at the basal level. However deletion of Rspo1 results in global alteration of muscle regeneration kinetics following acute injury. We found that muscle stem cells lacking Rspo1 show delayed differentiation. Transcriptome analysis further demonstrated that Rspo1 is required for the activation of Wnt/β-catenin target genes in muscle cells. Furthermore, muscle cells lacking Rspo1 fuse with a higher frequency than normal cells, leading to larger myotubes containing more nuclei both in vitro and in vivo. We found the increase in muscle fusion was dependent on up-regulation of non-canonical Wnt7a/Fzd7/Rac1 signaling. We conclude that antagonistic control of canonical and non-canonical Wnt signaling pathways by Rspo1 in muscle stem cell progeny is important for restitution of normal muscle architecture during skeletal muscle regeneration.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 744
Author(s):  
Matthew Borok ◽  
Nathalie Didier ◽  
Francesca Gattazzo ◽  
Teoman Ozturk ◽  
Aurelien Corneau ◽  
...  

Background: Skeletal muscle is one of the only mammalian tissues capable of rapid and efficient regeneration after trauma or in pathological conditions. Skeletal muscle regeneration is driven by the muscle satellite cells, the stem cell population in interaction with their niche. Upon injury, muscle fibers undergo necrosis and muscle stem cells activate, proliferate and fuse to form new myofibers. In addition to myogenic cell populations, interaction with other cell types such as inflammatory cells, mesenchymal (fibroadipogenic progenitors—FAPs, pericytes) and vascular (endothelial) lineages are important for efficient muscle repair. While the role of the distinct populations involved in skeletal muscle regeneration is well characterized, the quantitative changes in the muscle stem cell and niche during the regeneration process remain poorly characterized. Methods: We have used mass cytometry to follow the main muscle cell types (muscle stem cells, vascular, mesenchymal and immune cell lineages) during early activation and over the course of muscle regeneration at D0, D2, D5 and D7 compared with uninjured muscles. Results: Early activation induces a number of rapid changes in the proteome of multiple cell types. Following the induction of damage, we observe a drastic loss of myogenic, vascular and mesenchymal cell lineages while immune cells invade the damaged tissue to clear debris and promote muscle repair. Immune cells constitute up to 80% of the mononuclear cells 5 days post-injury. We show that muscle stem cells are quickly activated in order to form new myofibers and reconstitute the quiescent muscle stem cell pool. In addition, our study provides a quantitative analysis of the various myogenic populations during muscle repair. Conclusions: We have developed a mass cytometry panel to investigate the dynamic nature of muscle regeneration at a single-cell level. Using our panel, we have identified early changes in the proteome of stressed satellite and niche cells. We have also quantified changes in the major cell types of skeletal muscle during regeneration and analyzed myogenic transcription factor expression in satellite cells throughout this process. Our results highlight the progressive dynamic shifts in cell populations and the distinct states of muscle stem cells adopted during skeletal muscle regeneration. Our findings give a deeper understanding of the cellular and molecular aspects of muscle regeneration.


2020 ◽  
Vol 21 (5) ◽  
pp. 1830 ◽  
Author(s):  
Hiroyuki Yamakawa ◽  
Dai Kusumoto ◽  
Hisayuki Hashimoto ◽  
Shinsuke Yuasa

Skeletal muscle comprises 30–40% of the weight of a healthy human body and is required for voluntary movements in humans. Mature skeletal muscle is formed by multinuclear cells, which are called myofibers. Formation of myofibers depends on the proliferation, differentiation, and fusion of muscle progenitor cells during development and after injury. Muscle progenitor cells are derived from muscle satellite (stem) cells (MuSCs), which reside on the surface of the myofiber but beneath the basement membrane. MuSCs play a central role in postnatal maintenance, growth, repair, and regeneration of skeletal muscle. In sedentary adult muscle, MuSCs are mitotically quiescent, but are promptly activated in response to muscle injury. Physiological and chronological aging induces MuSC aging, leading to an impaired regenerative capability. Importantly, in pathological situations, repetitive muscle injury induces early impairment of MuSCs due to stem cell aging and leads to early impairment of regeneration ability. In this review, we discuss (1) the role of MuSCs in muscle regeneration, (2) stem cell aging under physiological and pathological conditions, and (3) prospects related to clinical applications of controlling MuSCs.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Dengjie Yu ◽  
Zijun Cai ◽  
Daishi Li ◽  
Yi Zhang ◽  
Miao He ◽  
...  

Stem cells have become a hot research topic in the field of regenerative medicine due to their self-renewal and differentiation capabilities. Skeletal muscle tissue is one of the most important tissues in the human body, and it is difficult to recover when severely damaged. However, conventional treatment methods can cause great pain to patients. Stem cell-based tissue engineering can repair skeletal muscle to the greatest extent with little damage. Therefore, the application of stem cells to skeletal muscle regeneration is very promising. In this review, we discuss scaffolds and stem cells for skeletal muscle regeneration and put forward our ideas for future development.


2012 ◽  
Vol 2 (1) ◽  
pp. 11-21
Author(s):  
Silvia Cristini ◽  
Giulio Alessandri ◽  
Francesco Acerbi ◽  
Daniela Tavian ◽  
Eugenio A. Parati ◽  
...  

2012 ◽  
Vol 2 (1) ◽  
pp. 11-21
Author(s):  
Silvia Cristini ◽  
Giulio Alessandri ◽  
Francesco Acerbi ◽  
Daniela Tavian ◽  
Eugenio A. Parati ◽  
...  

FEBS Letters ◽  
2015 ◽  
Vol 589 (11) ◽  
pp. 1257-1265 ◽  
Author(s):  
Yoshihiro Nakamura ◽  
Shigeru Miyaki ◽  
Hiroyuki Ishitobi ◽  
Sho Matsuyama ◽  
Tomoyuki Nakasa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document