scholarly journals Regulation of Myosin II Dynamics by Phosphorylation and Dephosphorylation of Its Light Chain in Epithelial Cells

2007 ◽  
Vol 18 (2) ◽  
pp. 605-616 ◽  
Author(s):  
Toshiyuki Watanabe ◽  
Hiroshi Hosoya ◽  
Shigenobu Yonemura

Nonmuscle myosin II, an actin-based motor protein, plays an essential role in actin cytoskeleton organization and cellular motility. Although phosphorylation of its regulatory light chain (MRLC) is known to be involved in myosin II filament assembly and motor activity in vitro, it remains unclear exactly how MRLC phosphorylation regulates myosin II dynamics in vivo. We established clones of Madin Darby canine kidney II epithelial cells expressing MRLC-enhanced green fluorescent protein or its mutants. Time-lapse imaging revealed that both phosphorylation and dephosphorylation are required for proper dynamics of myosin II. Inhibitors affecting myosin phosphorylation and MRLC mutants indicated that monophosphorylation of MRLC is required and sufficient for maintenance of stress fibers. Diphosphorylated MRLC stabilized myosin II filaments and was distributed locally in regions of stress fibers where contraction occurs, suggesting that diphosphorylation is involved in the spatial regulation of myosin II assembly and contraction. We further found that myosin phosphatase or Zipper-interacting protein kinase localizes to stress fibers depending on the activity of myosin II ATPase.

2002 ◽  
Vol 196 (4) ◽  
pp. 551-555 ◽  
Author(s):  
Kendra D. White ◽  
J. Donald Capra

Polymeric immunoglobulins provide first line humoral defense at mucosal surfaces to which they are specifically transported by the polymeric immunoglobulin receptor (pIgR) on mucosal and glandular epithelial cells. Previous studies from our laboratory suggested that amino acids 402–410 of the Cα3 domain of dimeric IgA (dIgA) represented a potential binding site for the pIgR. Here by binding human secretory component to overlapping decapeptides of Cα3, we confirm these residues and also uncover an additional site. Furthermore, we show that the Cα3 motif appears to be sufficient to direct transport of green fluorescent protein through the pIgR-specific cellular transcytosis system. An alternative approach identified phage peptides, selected from a library by the in vitro Madin Darby Canine Kidney transcytosis assay, for pIgR-mediated transport through epithelial cells. Some transcytosis-selected peptides map to the same 402–410 pIgR-binding Cα3 site. Further in vivo studies document that at least one of these peptides is transported in a rat model measuring hepatic bile transport. In addition to identifying small peptides that are both bound and transported by the pIgR, this study provides evidence that the pIgR-mediated mucosal secretion system may represent a means of targeting small molecule therapeutics and genes to mucosal epithelial cells.


Open Biology ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 200010
Author(s):  
Navaneethan Palanisamy ◽  
Mehmet Ali Öztürk ◽  
Emir Bora Akmeriç ◽  
Barbara Di Ventura

The Escherichia coli Min system plays an important role in the proper placement of the septum ring at mid-cell during cell division. MinE forms a pole-to-pole spatial oscillator with the membrane-bound ATPase MinD, resulting in MinD concentration being the lowest at mid-cell. MinC, the direct inhibitor of the septum initiator protein FtsZ, forms a complex with MinD at the membrane, mirroring its polar gradients. Therefore, MinC-mediated FtsZ inhibition occurs away from mid-cell. Min oscillations are often studied in living cells by time-lapse microscopy using fluorescently labelled Min proteins. Here, we show that, despite permitting oscillations to occur in a range of protein concentrations, the enhanced yellow fluorescent protein (eYFP) C-terminally fused to MinE impairs its function. Combining in vivo , in vitro and in silico approaches, we demonstrate that eYFP compromises the ability of MinE to displace MinC from MinD, to stimulate MinD ATPase activity and to directly bind to the membrane. Moreover, we reveal that MinE-eYFP is prone to aggregation. In silico analyses predict that other fluorescent proteins are also likely to compromise several functionalities of MinE, suggesting that the results presented here are not specific to eYFP.


2020 ◽  
Vol 29 ◽  
pp. 096368972092968
Author(s):  
Lara Moussa ◽  
Alexia Lapière ◽  
Claire Squiban ◽  
Christelle Demarquay ◽  
Fabien Milliat ◽  
...  

Radiation therapy is crucial in the therapeutic arsenal to cure cancers; however, non-neoplastic tissues around an abdominopelvic tumor can be damaged by ionizing radiation. In particular, the radio-induced death of highly proliferative stem/progenitor cells of the colonic mucosa could induce severe ulcers. The importance of sequelae for patients with gastrointestinal complications after radiotherapy and the absence of satisfactory management has opened the field to the testing of innovative treatments. The aim of this study was to use adult epithelial cells from the colon, to reduce colonic injuries in an animal model reproducing radiation damage observed in patients. We demonstrated that transplanted in vitro-amplified epithelial cells from colonic organoids (ECO) of C57/Bl6 mice expressing green fluorescent protein implant, proliferate, and differentiate in irradiated mucosa and reduce ulcer size. To improve the therapeutic benefit of ECO-based treatment with clinical translatability, we performed co-injection of ECO with mesenchymal stromal cells (MSCs), cells involved in niche function and widely used in clinical trials. We observed in vivo an improvement of the therapeutic benefit and in vitro analysis highlighted that co-culture of MSCs with ECO increases the number, proliferation, and size of colonic organoids. We also demonstrated, using gene expression analysis and siRNA inhibition, the involvement of bone morphogenetic protein antagonists in MSC-induced organoid formation. This study provides evidence of the potential of ECO to limit late radiation effects on the colon and opens perspectives on combined strategies to improve their amplification abilities and therapeutic effects.


2013 ◽  
Vol 304 (8) ◽  
pp. L511-L518 ◽  
Author(s):  
Shijing Fang ◽  
Anne L. Crews ◽  
Wei Chen ◽  
Joungjoa Park ◽  
Qi Yin ◽  
...  

Myristoylated alanine-rich C kinase substrate (MARCKS) protein has been recognized as a key regulatory molecule controlling mucin secretion by airway epithelial cells in vitro and in vivo. We recently showed that two intracellular chaperones, heat shock protein 70 (HSP70) and cysteine string protein (CSP), associate with MARCKS in the secretory mechanism. To elucidate more fully MARCKS-HSP70 interactions in this process, studies were performed in well-differentiated normal human bronchial epithelial (NHBE) cells maintained in air-liquid interface culture utilizing specific pharmacological inhibition of HSP70 with pyrimidinone MAL3-101 and siRNA approaches. The results indicate that HSP70 interaction with MARCKS is enhanced after exposure of the cells to the protein kinase C activator/mucin secretagogue, phorbol 12-myristate 13-acetate (PMA). Pretreatment of NHBEs with MAL3-101 attenuated in a concentration-dependent manner PMA-stimulated mucin secretion and interactions among HSP70, MARCKS, and CSP. In additional studies, trafficking of MARCKS in living NHBE cells was investigated after transfecting cells with fluorescently tagged DNA constructs: MARCKS-yellow fluorescent protein, and/or HSP70-cyan fluorescent protein. Cells were treated with PMA 48 h posttransfection, and trafficking of the constructs was examined by confocal microscopy. MARCKS translocated rapidly from plasma membrane to cytoplasm, whereas HSP70 was observed in the cytoplasm and appeared to associate with MARCKS after PMA exposure. Pretreatment of cells with either MAL3-101 or HSP70 siRNA inhibited translocation of MARCKS. These results provide evidence of a role for HSP70 in mediating mucin secretion via interactions with MARCKS and that these interactions are critical for the cytoplasmic translocation of MARCKS upon its phosphorylation.


2006 ◽  
Vol 80 (9) ◽  
pp. 4264-4275 ◽  
Author(s):  
Grace E. Lee ◽  
John W. Murray ◽  
Allan W. Wolkoff ◽  
Duncan W. Wilson

ABSTRACT Microtubule-mediated anterograde transport of herpes simplex virus (HSV) from the neuronal cell body to the axon terminal is crucial for the spread and transmission of the virus. It is therefore of central importance to identify the cellular and viral factors responsible for this trafficking event. In previous studies, we isolated HSV-containing cytoplasmic organelles from infected cells and showed that they represent the first and only destination for HSV capsids after they emerge from the nucleus. In the present study, we tested whether these cytoplasmic compartments were capable of microtubule-dependent traffic. Organelles containing green fluorescent protein-labeled HSV capsids were isolated and found to be able to bind rhodamine-labeled microtubules polymerized in vitro. Following the addition of ATP, the HSV-associated organelles trafficked along the microtubules, as visualized by time lapse microscopy in an imaging microchamber. The velocity and processivity of trafficking resembled those seen for neurotropic herpesvirus traffic in living axons. The use of motor-specific inhibitors indicated that traffic was predominantly kinesin mediated, consistent with the reconstitution of anterograde traffic. Immunocytochemical studies revealed that the majority of HSV-containing organelles attached to the microtubules contained the trans-Golgi network marker TGN46. This simple, minimal reconstitution of microtubule-mediated anterograde traffic should facilitate and complement molecular analysis of HSV egress in vivo.


1999 ◽  
Vol 5 (S2) ◽  
pp. 1228-1229
Author(s):  
Christopher S. Wallace ◽  
Michael A. Silverman ◽  
Michelle A. Burack ◽  
Janis E. Lochner ◽  
Richard G. Allen ◽  
...  

Recent technical advances in the ability to attach an endogenously fluorescent protein sequence—i.e., green fluorescent protein or GFP and its derivatives--to any protein of experimental interest promises to mark a new era of progress in the study of protein targeting. Bringing these new tools to bear on neurons of the central nervous system has been challenging, however, because they have a very complex structure and are relatively difficult to transfect because they are post-mitotic.We use two cell culture approaches to characterize protein trafficking within neurons of the central nervous system in vitro. The first is a dissociated culture of hippocampal neurons from embryonic (El8) rats which is especially suited to analysis by conventional light microscopy because these neurons are grown on glass coverslips at low density. Neurons cultured in this way develop a morphology comparable to that seen in vivo and permit the establishment of axons and dendrites to be analyzed by time-lapse microscopy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 953-953
Author(s):  
Sosale Nisha ◽  
Dennis E. Discher

Abstract Resident macrophages in spleen and liver are particularly adept at recognizing foreign pathogens through recognition of ‘non-self’ proteins on the pathogen surface but also through the absence of ‘self’ proteins that are highly displayed on circulating blood cells. Red blood cells display a ‘marker of self’ protein CD47 which increases the in vivo half-life and decreases red-pulp splenic macrophage uptake of mouse RBC (Oldenborg et al, Science 2000) and also of particles displaying human-CD47 in recent studies by our group (Rodriguez et al, Science 2013). CD47 signals self through its counter receptor SIRPa, which is highly expressed on the surfaces of myeloid cells but also highly polymorphic. The CD47 protein functions in vitro as a marker of self toward human SIRPa on human macrophages and monocytes, inhibiting accumulation of myosin II motor protein to the phagocytic synapse (Tsai 2008). The work here aims to clarify when and how CD47-SIRPa inhibition physically signals ‘self’ during macrophage phagocytosis uptake. While it is clear that CD47 reduces the number of uptake events, here we use time-lapse and confocal microscopy to examine the forces of distortion imparted by phagocytes on opsonized red blood cell targets during uptake. Glutaraldehyde-fixed RBC are also used as a model to assess the affects of cell rigidity in this self-recognition process, since rigidity is relevant to processes as diverse as RBC aging and sickle RBC to malaria but also because adhesion (by macrophages) is expected to activate the myosin-II contractility system and oppose CD47 signaling. Through blocking and pharmacological approaches, we parse the pathways between foreign, self, and rigidity sensing. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 146 (5) ◽  
pp. 981-992 ◽  
Author(s):  
Charles B. Shuster ◽  
David R. Burgess

One model for the timing of cytokinesis is based on findings that p34cdc2 can phosphorylate myosin regulatory light chain (LC20) on inhibitory sites (serines 1 and 2) in vitro (Satterwhite, L.L., M.H. Lohka, K.L. Wilson, T.Y. Scherson, L.J. Cisek, J.L. Corden, and T.D. Pollard. 1992. J. Cell Biol. 118:595–605), and this inhibition is proposed to delay cytokinesis until p34cdc2 activity falls at anaphase. We have characterized previously several kinase activities associated with the isolated cortical cytoskeleton of dividing sea urchin embryos (Walker, G.R., C.B. Shuster, and D.R. Burgess. 1997. J. Cell Sci. 110:1373–1386). Among these kinases and substrates is p34cdc2 and LC20. In comparison with whole cell activity, cortical H1 kinase activity is delayed, with maximum levels in cortices prepared from late anaphase/telophase embryos. To determine whether cortical-associated p34cdc2 influences cortical myosin II activity during cytokinesis, we labeled eggs in vivo with [32P]orthophosphate, prepared cortices, and mapped LC20 phosphorylation through the first cell division. We found no evidence of serine 1,2 phosphorylation at any time during mitosis on LC20 from cortically associated myosin. Instead, we observed a sharp rise in serine 19 phosphorylation during anaphase and telophase, consistent with an activating phosphorylation by myosin light chain kinase. However, serine 1,2 phosphorylation was detected on light chains from detergent-soluble myosin II. Furthermore, cells arrested in mitosis by microinjection of nondegradable cyclin B could be induced to form cleavage furrows if the spindle poles were physically placed in close proximity to the cortex. These results suggest that factors independent of myosin II inactivation, such as the delivery of the cleavage stimulus to the cortex, determine the timing of cytokinesis.


2020 ◽  
Author(s):  
Navaneethan Palanisamy ◽  
Mehmet Ali Öztürk ◽  
Barbara Di Ventura

AbstractThe Escherichia coli Min system plays an important role in the proper placement of the septum ring (Z-ring) at mid-cell during cell division. MinE forms a pole-to-pole spatial oscillator together with the membrane-bound ATPase MinD, which results in MinD having a concentration gradient with maxima at the poles and minimum at mid-cell. MinC, the direct inhibitor of the Z-ring initiator protein FtsZ, forms a complex with MinD at the membrane, thus mirroring MinD polar gradients. Therefore, MinC-mediated FtsZ inhibition occurs away from mid-cell. The existence of the oscillations was revealed by performing time-lapse microscopy with fluorescently-labeled Min proteins. These fusion proteins have been since then widely used to study properties of the Min system. Here we show that, despite permitting oscillations to occur in a range of protein concentrations, the enhanced yellow fluorescent protein (eYFP) C-terminally fused to MinE impairs its function. Combining in vivo, in vitro and in silico approaches, we demonstrate that the eYFP compromises MinE ability to displace MinC from MinD, to stimulate MinD ATPase activity and to directly bind to the membrane. Moreover, we reveal that MinE-eYFP is prone to aggregation. Taken together, our results indicate that this fusion is functionally impaired and should be used with caution in cell biological studies.


2001 ◽  
Vol 153 (3) ◽  
pp. 585-598 ◽  
Author(s):  
Yizeng Tu ◽  
Yao Huang ◽  
Yongjun Zhang ◽  
Yun Hua ◽  
Chuanyue Wu

Integrin-linked kinase (ILK) is a multidomain focal adhesion (FA) protein that functions as an important regulator of integrin-mediated processes. We report here the identification and characterization of a new calponin homology (CH) domain-containing ILK-binding protein (CH-ILKBP). CH-ILKBP is widely expressed and highly conserved among different organisms from nematodes to human. CH-ILKBP interacts with ILK in vitro and in vivo, and the ILK COOH-terminal domain and the CH-ILKBP CH2 domain mediate the interaction. CH-ILKBP, ILK, and PINCH, a FA protein that binds the NH2-terminal domain of ILK, form a complex in cells. Using multiple approaches (epitope-tagged CH-ILKBP, monoclonal anti–CH-ILKBP antibodies, and green fluorescent protein–CH-ILKBP), we demonstrate that CH-ILKBP localizes to FAs and associates with the cytoskeleton. Deletion of the ILK-binding CH2 domain abolished the ability of CH-ILKBP to localize to FAs. Furthermore, the CH2 domain alone is sufficient for FA targeting, and a point mutation that inhibits the ILK-binding impaired the FA localization of CH-ILKBP. Thus, the CH2 domain, through its interaction with ILK, mediates the FA localization of CH-ILKBP. Finally, we show that overexpression of the ILK-binding CH2 fragment or the ILK-binding defective point mutant inhibited cell adhesion and spreading. These findings reveal a novel CH-ILKBP–ILK–PINCH complex and provide important evidence for a crucial role of this complex in the regulation of cell adhesion and cytoskeleton organization.


Sign in / Sign up

Export Citation Format

Share Document