scholarly journals Cdo Interacts with APPL1 and Activates AKT in Myoblast Differentiation

2010 ◽  
Vol 21 (14) ◽  
pp. 2399-2411 ◽  
Author(s):  
Gyu-Un Bae ◽  
Jae-Rin Lee ◽  
Bok-Geon Kim ◽  
Ji-Won Han ◽  
Young-Eun Leem ◽  
...  

Cell–cell interactions between muscle precursors are required for myogenic differentiation; however, underlying mechanisms are largely unknown. Promyogenic cell surface protein Cdo functions as a component of multiprotein complexes containing other cell adhesion molecules, Boc, Neogenin and N-cadherin, and mediates some of signals triggered by cell–cell interactions between muscle precursors. Cdo activates p38MAPK via interaction with two scaffold proteins JLP and Bnip-2 to promote myogenesis. p38MAPK and Akt signaling are required for myogenic differentiation and activation of both signaling pathways is crucial for efficient myogenic differentiation. We report here that APPL1, an interacting partner of Akt, forms complexes with Cdo and Boc in differentiating myoblasts. Both Cdo and APPL1 are required for efficient Akt activation during myoblast differentiation. The defective differentiation of Cdo-depleted cells is fully rescued by overexpression of a constitutively active form of Akt, whereas overexpression of APPL1 fails to do so. Taken together, Cdo activates Akt through association with APPL1 during myoblast differentiation, and this complex likely mediates some of the promyogenic effect of cell–cell interaction. The promyogenic function of Cdo involves a coordinated activation of p38MAPK and Akt via association with scaffold proteins, JLP and Bnip-2 for p38MAPK and APPL1 for Akt.

2018 ◽  
Vol 115 (48) ◽  
pp. 12112-12117 ◽  
Author(s):  
Rebekka E. Breier ◽  
Cristian C. Lalescu ◽  
Devin Waas ◽  
Michael Wilczek ◽  
Marco G. Mazza

Phytoplankton often encounter turbulence in their habitat. As most toxic phytoplankton species are motile, resolving the interplay of motility and turbulence has fundamental repercussions on our understanding of their own ecology and of the entire ecosystems they inhabit. The spatial distribution of motile phytoplankton cells exhibits patchiness at distances of decimeter to millimeter scales for numerous species with different motility strategies. The explanation of this general phenomenon remains challenging. Furthermore, hydrodynamic cell–cell interactions, which grow more relevant as the density in the patches increases, have been so far ignored. Here, we combine particle simulations and continuum theory to study the emergence of patchiness in motile microorganisms in three dimensions. By addressing the combined effects of motility, cell–cell interaction, and turbulent flow conditions, we uncover a general mechanism: The coupling of cell–cell interactions to the turbulent dynamics favors the formation of dense patches. Identification of the important length and time scales, independent from the motility mode, allows us to elucidate a general physical mechanism underpinning the emergence of patchiness. Our results shed light on the dynamical characteristics necessary for the formation of patchiness and complement current efforts to unravel planktonic ecological interactions.


2021 ◽  
Author(s):  
Brendan T Innes ◽  
Gary D Bader

Cell-cell interactions are often predicted from single-cell transcriptomics data based on observing receptor and corresponding ligand transcripts in cells. These predictions could theoretically be improved by inspecting the transcriptome of the receptor cell for evidence of gene expression changes in response to the ligand. It is commonly expected that a given receptor, in response to ligand activation, will have a characteristic downstream gene expression signature. However, this assumption has not been well tested. We used ligand perturbation data from both the high-throughput Connectivity Map resource and published transcriptomic assays of cell lines and purified cell populations to determine whether ligand signals have unique and generalizable transcriptional signatures across biological conditions. Most of the receptors we analyzed did not have such characteristic gene expression signatures - instead these signatures were highly dependent on cell type. Cell context is thus important when considering transcriptomic evidence of ligand signaling, which makes it challenging to build generalizable ligand-receptor interaction signatures to improve cell-cell interaction predictions.


Development ◽  
2001 ◽  
Vol 128 (7) ◽  
pp. 1211-1219 ◽  
Author(s):  
A. Arai ◽  
A. Nakamoto ◽  
T. Shimizu

In embryos of clitellate annelids (i.e. oligochaetes and leeches), four ectodermal teloblasts (ectoteloblasts N, O, P and Q) are generated on either side through a stereotyped sequence of cell divisions of a proteloblast, NOPQ. The four ectoteloblasts assume distinct fates and produce bandlets of smaller progeny cells, which join together to form an ectodermal germ band. The pattern of the germ band, with respect to the ventrodorsal order of the bandlets, has been highly preserved in clitellate annelids. We show that specification of ectoteloblast lineages in the oligochaete annelid Tubifex involves cell interaction networks distinct from those in leeches. Cell ablation experiments have shown that fates of teloblasts N, P and Q in Tubifex embryos are determined rigidly as early as their birth. In contrast, the O teloblast and its progeny are initially pluripotent and their fate becomes restricted to the O fate through an inductive signal emanating from the P lineage. In the absence of this signal, the O lineage assumes the P fate. These results differ significantly from those obtained in embryos of the leech Helobdella, suggesting the diversity of patterning mechanisms that give rise to germ bands with similar morphological pattern.


2021 ◽  
Author(s):  
Nathanael Andrews ◽  
Jason T. Serviss ◽  
Natalie Geyer (Karolinska Institute Stockholm) ◽  
Agneta B. Andersson ◽  
Ewa Dzwonkowska ◽  
...  

Single cell sequencing methods facilitate the study of tissues at high resolution, revealing rare cell types with varying transcriptomes or genomes, but so far have been lacking the capacity to investigate cell-cell interactions. Here, we introduce CIM-seq, an unsupervised and high-throughput method to analyze direct physical cell-cell interactions between every cell type in a given tissue. CIM-seq is based on RNA sequencing of incompletely dissociated cells, followed by computational deconvolution of these into their constituent cell types using machine learning. CIM-seq is broadly applicable to studies that aim to simultaneously investigate the constituent cell types and the global interaction profile in a specific tissue.


Genetics ◽  
1993 ◽  
Vol 133 (4) ◽  
pp. 967-978 ◽  
Author(s):  
L B Bender ◽  
P J Kooh ◽  
M A Muskavitch

Abstract Delta (Dl) encodes a cell surface protein that mediates cell-cell interactions central to the specification of a variety of cell fates during embryonic and postembryonic development of Drosophila melanogaster. We find that the Delta protein is expressed intermittently in follicle cells and in germ-line cells during stages 1-10 of oogenesis. Furthermore, Delta expression during oogenesis can be correlated with a number of morphogenetic defects associated with sterility observed in Dl mutant females, including failure of stalk formation within the germarium and subsequent fusion of egg chambers, necrosis in germ-line cells, and multiphasic embryonic arrest of fertilized eggs. We have also identified a Dl mutation that leads to context-dependent defects in Dl function during oogenesis. Direct comparison of Delta protein expression with that of the Notch protein in the ovary reveals substantial, but incomplete, coincidence of expression patterns in space and time. We discuss possible roles for the Delta protein in cell-cell interactions required for cell fate specification processes during oogenesis in light of available developmental and histochemical data.


2021 ◽  
Author(s):  
Ming Lei ◽  
Vikas Trivedi ◽  
Nikhil Unni Nair ◽  
Kyongbum Lee ◽  
James A. Van Deventer

Synthetic cell-cell interaction systems can be useful for understanding multicellular communities or for screening binding molecules. We adapt a previously characterized set of synthetic cognate nanobody-antigen pairs to a yeast-bacteria coincubation format and use flow cytometry to evaluate cell-cell interactions mediated by binding between surface-displayed molecules. We further use fluorescence-activated cell sorting (FACS) to enrich for a specific yeast-displayed nanobody within a mixed yeast-display population. Finally, we demonstrate that this system supports characterization of a therapeutically relevant nanobody-antigen interaction: a previously discovered nanobody that binds to the intimin protein expressed on the surface of enterohemorrhagic E. coli. Overall, our findings indicate that the yeast-bacteria format supports efficient evaluation of ligand-target interactions. With further development, this format may facilitate systematic characterization and high throughput discovery of bacterial surface-binding molecules.


2019 ◽  
Author(s):  
Lavinia Gambelli ◽  
Benjamin Meyer ◽  
Mathew McLaren ◽  
Kelly Sanders ◽  
Tessa E.F. Quax ◽  
...  

AbstractSurface protein layers (S-layers) often form the only structural component of the archaeal cell wall and are therefore important for cell survival. S-layers have a plethora of cellular functions including maintenance of cell shape, osmotic and mechanical stability, the formation of a semi-permeable protective barrier around the cell, cell-cell interaction, as well as surface adhesion. Despite the central importance of the S-layer for archaeal life, their three-dimensional architecture is still poorly understood. Here we present the first detailed 3D electron cryo-microscopy maps of archaeal S-layers from three different Sulfolobus strains. We were able to pinpoint the positions and determine the structure of the two subunits SlaA and SlaB. We also present a model describing the assembly of the mature S-layer.


2020 ◽  
Author(s):  
Nathanael Andrews ◽  
Jason T. Serviss ◽  
Natalie Geyer (Karolinska Institute Stockholm) ◽  
Agneta B. Andersson ◽  
Ewa Dzwonkowska ◽  
...  

Single cell sequencing methods facilitate the study of tissues at high resolution, revealing rare cell types with varying transcriptomes or genomes, but so far have been lacking the capacity to investigate cell-cell interactions. Here, we introduce CIM-seq, an unsupervised and high-throughput method to analyze direct physical cell-cell interactions between every cell type in a given tissue. CIM-seq is based on RNA sequencing of incompletely dissociated cells, followed by computational deconvolution of these into their constituent cell types using machine learning. CIM-seq is broadly applicable to studies that aim to simultaneously investigate the constituent cell types and the global interaction profile in a specific tissue.


RSC Advances ◽  
2019 ◽  
Vol 9 (70) ◽  
pp. 41066-41073 ◽  
Author(s):  
Margaux Duchamp ◽  
Thamani Dahoun ◽  
Clarisse Vaillier ◽  
Marion Arnaud ◽  
Sara Bobisse ◽  
...  

In this study we present a novel microfluidic hydrodynamic trapping device to probe the cell–cell interaction between all cell samples of two distinct populations.


Sign in / Sign up

Export Citation Format

Share Document