scholarly journals Architecture and modular assembly of Sulfolobus S-layers revealed by electron cryo-tomography

2019 ◽  
Author(s):  
Lavinia Gambelli ◽  
Benjamin Meyer ◽  
Mathew McLaren ◽  
Kelly Sanders ◽  
Tessa E.F. Quax ◽  
...  

AbstractSurface protein layers (S-layers) often form the only structural component of the archaeal cell wall and are therefore important for cell survival. S-layers have a plethora of cellular functions including maintenance of cell shape, osmotic and mechanical stability, the formation of a semi-permeable protective barrier around the cell, cell-cell interaction, as well as surface adhesion. Despite the central importance of the S-layer for archaeal life, their three-dimensional architecture is still poorly understood. Here we present the first detailed 3D electron cryo-microscopy maps of archaeal S-layers from three different Sulfolobus strains. We were able to pinpoint the positions and determine the structure of the two subunits SlaA and SlaB. We also present a model describing the assembly of the mature S-layer.

2019 ◽  
Vol 116 (50) ◽  
pp. 25278-25286 ◽  
Author(s):  
Lavinia Gambelli ◽  
Benjamin H. Meyer ◽  
Mathew McLaren ◽  
Kelly Sanders ◽  
Tessa E. F. Quax ◽  
...  

Surface protein layers (S-layers) often form the only structural component of the archaeal cell wall and are therefore important for cell survival. S-layers have a plethora of cellular functions including maintenance of cell shape, osmotic, and mechanical stability, the formation of a semipermeable protective barrier around the cell, and cell–cell interaction, as well as surface adhesion. Despite the central importance of S-layers for archaeal life, their 3-dimensional (3D) architecture is still poorly understood. Here we present detailed 3D electron cryomicroscopy maps of archaeal S-layers from 3 different Sulfolobus strains. We were able to pinpoint the positions and determine the structure of the 2 subunits SlaA and SlaB. We also present a model describing the assembly of the mature S-layer.


2017 ◽  
Vol 3 (2) ◽  
pp. 683-686
Author(s):  
Sarah Biela ◽  
Britta Striegl ◽  
Kerstin Frey ◽  
Joachim P. Spatz ◽  
Ralf Kemkemer

AbstractCell-cell and cell-extracellular matrix (ECM) adhesion regulates fundamental cellular functions and is crucial for cell-material contact. Adhesion is influenced by many factors like affinity and specificity of the receptor-ligand interaction or overall ligand concentration and density. To investigate molecular details of cell-ECM and cadherins (cell-cell) interaction in vascular cells functional nanostructured surfaces were used Ligand-functionalized gold nanoparticles (AuNPs) with 6-8 nm diameter, are precisely immobilized on a surface and separated by non-adhesive regions so that individual integrins or cadherins can specifically interact with the ligands on the AuNPs. Using 40 nm and 90 nm distances between the AuNPs and functionalized either with peptide motifs of the extracellular matrix (RGD or REDV) or vascular endothelial-cadherins (VEC), the influence of distance and ligand specificity on spreading and adhesion of endothelial cells (ECs) and smooth muscle cells (SMCs) was investigated. We demonstrate that RGD-dependent adhesion of vascular cells is similar to other cell types and that the distance dependence for integrin binding to ECM-peptides is also valid for the REDV motif. VEC-ligands decrease adhesion significantly on the tested ligand distances. These results may be helpful for future improvements in vascular tissue engineering and for development of implant surfaces.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1470 ◽  
Author(s):  
Dettin ◽  
Sieni ◽  
Zamuner ◽  
Marino ◽  
Sgarbossa ◽  
...  

Tumor electroporation (EP) refers to the permeabilization of the cell membrane by means of short electric pulses thus allowing the potentiation of chemotherapeutic drugs. Standard plate adhesion 2D cell cultures can simulate the in vivo environment only partially due to lack of cell–cell interaction and extracellular matrix (ECM). In this study, we assessed a novel 3D scaffold for cell cultures based on hyaluronic acid and ionic-complementary self-assembling peptides (SAPs), by studying the growth patterns of two different breast carcinoma cell lines (HCC1569 and MDA-MB231). This 3D scaffold modulates cell shape and induces extracellular matrix deposit around cells. In the MDA-MB 231 cell line, it allows three-dimensional growth of structures known as spheroids, while in HCC1569 it achieves a cell organization similar to that observed in vivo. Interestingly, we were able to visualize the electroporation effect on the cells seeded in the new scaffold by means of standard propidium iodide assay and fluorescence microscopy. Thanks to the presence of cell–cell and cell–ECM interactions, the new 3D scaffold may represent a more reliable support for EP studies than 2D cancer cell cultures and may be used to test new EP-delivered drugs and novel EP protocols.


2007 ◽  
Vol 27 (17) ◽  
pp. 6218-6228 ◽  
Author(s):  
Susan H. Richardson ◽  
Tobias Starborg ◽  
Yinhui Lu ◽  
Sally M. Humphries ◽  
Roger S. Meadows ◽  
...  

ABSTRACT The ability of tendon to transmit forces from muscle to bone is directly attributable to an extracellular matrix (ECM) containing parallel bundles of collagen fibrils. Although the biosynthesis of collagen is well characterized, how cells deposit the fibrils in regular parallel arrays is not understood. Here we show that cells in the tendon mesenchyme are nearly cylindrical and are aligned side by side and end to end along the proximal-distal axis of the limb. Using three-dimensional reconstruction electron microscopy, we show that the cells have deep channels in their plasma membranes and contain bundles of parallel fibrils that are contiguous from one cell to another along the tendon axis. A combination of electron microscopy, microarray analysis, and immunofluorescence suggested that the cells are held together by cadherin-11-containing cell-cell junctions. Using a combination of RNA interference and electron microscopy, we showed that knockdown of cadherin-11 resulted in cell separation, loss of plasma membrane channels, and misalignment of the collagen fibrils in the ECM. Our results show that tendon formation in the developing limb requires precise regulation of cell shape via cadherin-11-mediated cell-cell junctions and coaxial alignment of plasma membrane channels in longitudinally stacked cells.


2010 ◽  
Vol 21 (14) ◽  
pp. 2399-2411 ◽  
Author(s):  
Gyu-Un Bae ◽  
Jae-Rin Lee ◽  
Bok-Geon Kim ◽  
Ji-Won Han ◽  
Young-Eun Leem ◽  
...  

Cell–cell interactions between muscle precursors are required for myogenic differentiation; however, underlying mechanisms are largely unknown. Promyogenic cell surface protein Cdo functions as a component of multiprotein complexes containing other cell adhesion molecules, Boc, Neogenin and N-cadherin, and mediates some of signals triggered by cell–cell interactions between muscle precursors. Cdo activates p38MAPK via interaction with two scaffold proteins JLP and Bnip-2 to promote myogenesis. p38MAPK and Akt signaling are required for myogenic differentiation and activation of both signaling pathways is crucial for efficient myogenic differentiation. We report here that APPL1, an interacting partner of Akt, forms complexes with Cdo and Boc in differentiating myoblasts. Both Cdo and APPL1 are required for efficient Akt activation during myoblast differentiation. The defective differentiation of Cdo-depleted cells is fully rescued by overexpression of a constitutively active form of Akt, whereas overexpression of APPL1 fails to do so. Taken together, Cdo activates Akt through association with APPL1 during myoblast differentiation, and this complex likely mediates some of the promyogenic effect of cell–cell interaction. The promyogenic function of Cdo involves a coordinated activation of p38MAPK and Akt via association with scaffold proteins, JLP and Bnip-2 for p38MAPK and APPL1 for Akt.


2019 ◽  
Author(s):  
Hiroshi Koyama ◽  
Hisashi Okumura ◽  
Atsushi M. Ito ◽  
Tetsuhisa Otani ◽  
Kazuyuki Nakamura ◽  
...  

AbstractMechanical properties of cell–cell interactions have been suggested to be critical for the emergence of diverse three-dimensional morphologies of multicellular organisms. Mechanical potential energy of cell–cell interactions has been theoretically assumed, however, whether such potential can be detectable in living systems remains poorly understood. In this study, we developed a novel framework for inferring mechanical forces of cell–cell interactions. First, by analogy to coarse-grained models in molecular and colloidal sciences, cells were approximately assumed to be spherical particles, where microscopic features of cells such as polarities and shapes were not explicitly incorporated and the mean forces (i.e. effective forces) of cell–cell interactions were considered. Then, the forces were statistically inferred from live imaging data, and subsequently, we successfully detected potentials of cell–cell interactions. Finally, computational simulations based on these potentials were performed to test whether these potentials can reproduce the original morphologies. Our results from various systems, including Madin-Darby canine kidney (MDCK) cells, C.elegans early embryos, and mouse blastocysts, suggest that the method can accurately infer the effective potentials and capture the diverse three-dimensional morphologies. Importantly, energy barriers were predicted to exist at the distant regions of the interactions, and this mechanical property of cell–cell interactions was essential for formation of cavities, tubes, cups, and two-dimensional sheets. Collectively, these structures constitute basic structures observed during morphogenesis and organogenesis. We propose that effective potentials of cell– cell interactions are parameters that can be measured from living organisms, and represent a fundamental principle underlying the emergence of diverse three-dimensional morphogenesis.


2011 ◽  
Vol 18 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Stephanie L.K. Bowers ◽  
William A. McFadden ◽  
Thomas K. Borg ◽  
Troy A. Baudino

AbstractNormal cardiac function is maintained through dynamic interactions of cardiac cells with each other and with the extracellular matrix. These interactions are important for remodeling during cardiac growth and pathophysiological conditions. However, the precise mechanisms of these interactions remain unclear. In this study we examined the importance of desmoplakin (DSP) in cardiac cell-cell interactions. Cell-cell communication in the heart requires the formation and preservation of cell contacts by cell adhesion junctions called desmosome-like structures. A major protein component of this complex is DSP, which plays a role in linking the cytoskeletal network to the plasma membrane. Our laboratory previously generated a polyclonal antibody (1611) against the detergent soluble fraction of cardiac fibroblast plasma membrane. In attempting to define which proteins 1611 recognizes, we performed two-dimensional electrophoresis and identified DSP as one of the major proteins recognized by 1611. Immunoprecipitation studies demonstrated that 1611 was able to directly pulldown DSP. We also demonstrate that 1611 and anti-DSP antibodies co-localize in whole heart sections. Finally, using a three-dimensional in vitro cell-cell interaction assay, we demonstrate that 1611 can inhibit cell-cell interactions. These data indicate that DSP is an important protein for cell-cell interactions and affects a variety of cellular functions, including cytokine secretion.


Sign in / Sign up

Export Citation Format

Share Document