scholarly journals GSK3β inactivation induces apoptosis of leukemia cells by repressing the function of c-Myb

2011 ◽  
Vol 22 (18) ◽  
pp. 3533-3540 ◽  
Author(s):  
Fangfang Zhou ◽  
Long Zhang ◽  
Theo van Laar ◽  
Hans van Dam ◽  
Peter ten Dijke

Glycogen synthase kinase 3β (GSK3β) regulates diverse physiological processes, including metabolism, development, oncogenesis, and neuroprotection. GSK3β kinase activity has been reported to be critical for various types of cancer cells, but the mechanism has remained elusive. In this study we examine the mechanism by which GSK3β regulates the survival of leukemia cells. We demonstrate that upon GSK3β kinase inhibition different types of leukemia cells show severe proliferation defects as a result of apoptosis. The transcription factor c-Myb is found to be the main target of GSK3β inhibition in cell survival. GSK3β inactivation reduces the expression of c-Myb by promoting its ubiquitination-mediated degradation, thereby inhibiting the expression of c-Myb–dependent antiapoptotic genes Bcl2 and survivin. Coimmunoprecipitation, reporter assays, chromatin immunoprecipitation, and knockdown studies show that c-Myb needs to interact and cooperate with transcription factor LEF-1 in the activation of Bcl2 and survivin and that both transcription factors are required for cell survival. These data reveal an as-yet-unknown mechanism by which GSK3β controls cell survival.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4214-4214
Author(s):  
Richard Dahl ◽  
Kristin S. Owens

Abstract Gfi-1 −/− mice generate abnormal immature myeloid cells exhibiting characteristics of both monocytes and granulocytes. One of Gfi-1’s critical functions is to downregulate monocyte specific genes in order for granulocytes to develop properly. Since the transcription factors C/EBP alpha and C/EBP epsilon are needed for granulocyte development we hypothesized that these factors may regulate Gfi-1 expression. The Gfi-1 promoter contains several putative C/EBP binding sites and we show by electrophoretic mobility shift and chromatin immunoprecipitation that C/EBP family members can bind to some of these sites. However we were unable to see activation of the Gfi-1 promoter by C/EBP proteins in transient transfection reporter assays. Other groups have shown that C/EBP proteins can synergize with the transcription factor c-myb. We observed that the Gfi-1 promoter contains sites for the hematopoietic transcription factor c-myb. Sevral of these c-myb binding sites are adjacent to C/EBP binding sites. In reporter assays in non-hematopoietic cells c-myb activated the Gfi-1 promoter by itself and this activity was enhanced when we included either C/EBP alpha or epsilon in the transfection. Our data suggests that C/EBP proteins and c-myb regulate the transcription of Gfi-1 in myeloid cells.


Leukemia ◽  
2015 ◽  
Vol 29 (7) ◽  
pp. 1555-1563 ◽  
Author(s):  
H Bhanot ◽  
M M Reddy ◽  
A Nonami ◽  
E L Weisberg ◽  
D Bonal ◽  
...  

2007 ◽  
Vol 39 (3) ◽  
pp. 278-286 ◽  
Author(s):  
Tone Berge ◽  
Vilborg Matre ◽  
Elen M. Brendeford ◽  
Thomas Sæther ◽  
Bernhard Lüscher ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
C. Peghaire ◽  
N. P. Dufton ◽  
M. Lang ◽  
I. I. Salles-Crawley ◽  
J. Ahnström ◽  
...  

Abstract Endothelial cells actively maintain an anti-thrombotic environment; loss of this protective function may lead to thrombosis and systemic coagulopathy. The transcription factor ERG is essential to maintain endothelial homeostasis. Here, we show that inducible endothelial ERG deletion (ErgiEC-KO) in mice is associated with spontaneous thrombosis, hemorrhages and systemic coagulopathy. We find that ERG drives transcription of the anticoagulant thrombomodulin (TM), as shown by reporter assays and chromatin immunoprecipitation. TM expression is regulated by shear stress (SS) via Krüppel-like factor 2 (KLF2). In vitro, ERG regulates TM expression under low SS conditions, by facilitating KLF2 binding to the TM promoter. However, ERG is dispensable for TM expression in high SS conditions. In ErgiEC-KO mice, TM expression is decreased in liver and lung microvasculature exposed to low SS but not in blood vessels exposed to high SS. Our study identifies an endogenous, vascular bed-specific anticoagulant pathway in microvasculature exposed to low SS.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 872-872
Author(s):  
Behzad Kharabi Masouleh ◽  
Christian Hurtz ◽  
Huimin Geng ◽  
Parham Ramezani-Rad ◽  
Laurie H. Glimcher ◽  
...  

Abstract Abstract 872 Background: The unfolded protein response (UPR) is a cellular machinery required to salvage of ER stress and to promote cell survival. The pathway consists of three different components, namely inositol-requiring enzyme 1a (IRE-1), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6) and converges at the level of its effector molecule X-box binding protein 1 (XBP1). Previous work identified Xbp1 as a central requirement of plasma cell development and as critical mediator of cell survival in plasma cell-derived multiple myeloma. RESULTS: While the role of Xbp1 in plasma cells and plasma cell malignancies is well established, we report here the unexpected finding of a central role of Xbp1 in the survival of pre-B cell-derived Ph+ ALL cells. Surprisingly, patient-derived Ph+ ALL cells express Xbp1 (and related molecules in the IRE1 pathway) at significantly higher levels than normal bone marrow pre-B cells. In addition, we found that high expression levels of Xbp1 at diagnosis predict poor poor overall survival (OS), relapse-free survival (RFS) of leukemia patients in two clinical trials for patients with high risk acute lymphoblastic leukemia (n=207; COG P9906 trial; p=1.12e-4 and ECOG E2993; n=215; p=2.48e-5). In addition, high levels of XBP1 correlated with positive minimal residual disease (MRD) status at day 29 after onset of chemotherapy. To study the function of Xbp1 in Ph+ ALL in a genetic experiment, we developed a Ph+ ALL leukemia model based on bone marrow progenitor cells from mice carring loxP-flanked allele of Xbp1 (Xbp1fl/fl). On the basis of this model, bone marrow B cell precursors were transformed by BCR-ABL1 in the presence of IL7. Inducible Cre-mediated deletion of Xbp1 was achieved by transduction of leukemia cells with tamoxifen (4-OHT)-inducible Cre. Interestingly, 4-OHT-induced deletion of Xbp1 in Ph+ ALL-like leukemia cells caused rapid cell death within two days of induction. Xbp1-deletion resulted in extensive apoptosis, cellular senescence and cell cycle arrest owing to increased levels of p53, p21 and Arf. Interestingly, similar observations were made in an in vivo setting where Xbp1-deletion resulted in prolonged survival of NOD-SCID transplant recipient mice (n=7; p=0.007). Mechanistically, deletion of Xbp1 leads to increased expression of the pro-apoptotic molecule CHOP as in plasma cells/multiple myeloma and phosphorylation of the stress MAP kinases p38 and JNK. CLINICAL RELEVANCE: To test the potential clinical relevance of these findings, we used a recently identified small-molecule inhibitor STF-083010 (Papandreou et al., 2011), which blocks the endonuclease activity of upstream molecule IRE-1, essential for the splicing of the active form of Xbp1. STF-083010 indeed inhibited splicing of XBP1 and overall mimicked findings in genetic experiments. Importantly, targeting of Xbp1 by STF-083010 also induced cell death in three patient-derived cases of Ph+ ALL carrying the T315I mutations, which confers far-reaching TKI-resistance. CONCLUSIONS: These findings identify Xbp1 as a fundamentally novel target for the therapy of TKI-resistant Ph+ ALL. Like plasma cells and tumor cells in multiple myeloma, Ph+ ALL cells are selectively sensitive to ER stress and critically dependent on Xbp1 and likely other factors of the UPR pathway. Clinical validation of this concept could lead to improved treatment options for patients with TKI-resistant Ph+ ALL. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Maik Luu ◽  
Rossana Romero ◽  
Jasmin Bazant ◽  
Elfadil Abass ◽  
Sabrina Hartmann ◽  
...  

2012 ◽  
Vol 50 (01) ◽  
Author(s):  
C Trierweiler ◽  
K Willim ◽  
HE Blum ◽  
P Hasselblatt

Sign in / Sign up

Export Citation Format

Share Document