endothelial homeostasis
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 25)

H-INDEX

10
(FIVE YEARS 4)

Author(s):  
Paulina Mierzejewska ◽  
Michal Kunc ◽  
Magdalena Agnieszka Zabielska-Kaczorowska ◽  
Barbara Kutryb-Zajac ◽  
Iwona Pelikant-Malecka ◽  
...  

AbstractOur recent studies identified a novel pathway of nicotinamide metabolism that involves 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) and demonstrated its endothelial cytotoxic effect. This study tested the effects of 4PYR and its metabolites in experimental models of breast cancer. Mice were divided into groups: 4T1 (injected with mammary 4T1 cancer cells), 4T1 + 4PYR (4PYR-treated 4T1 mice), and control, maintained for 2 or 21 days. Lung metastasis and endothelial function were analyzed together with blood nucleotides (including 4PYR), plasma amino acids, nicotinamide metabolites, and vascular ectoenzymes of nucleotide catabolism. 4PYR metabolism was also evaluated in cultured 4T1, MDA-MB-231, MCF-7, and T47D cells. An increase in blood 4PYR in 4T1 mice was observed at 2 days. 4PYR and its metabolites were noticed after 21 days in 4T1 only. Higher blood 4PYR was linked with more lung metastases in 4T1 + 4PYR vs. 4T1. Decreased L-arginine, higher asymmetric dimethyl-L-arginine, and higher vascular ecto-adenosine deaminase were observed in 4T1 + 4PYR vs. 4T1 and control. Vascular relaxation caused by flow-dependent endothelial activation in 4PYR-treated mice was significantly lower than in control. The permeability of 4PYR-treated endothelial cells was increased. Decreased nicotinamide but enhanced nicotinamide metabolites were noticed in 4T1 vs. control. Reduced N-methylnicotinamide and a further increase in Met2PY were observed in 4T1 + 4PYR vs. 4T1 and control. In cultured breast cancer cells, estrogen and progesterone receptor antagonists inhibited the production of 4PYR metabolites. 4PYR formation is accelerated in cancer and induces metabolic disturbances that may affect cancer progression and, especially, metastasis, probably through impaired endothelial homeostasis. 4PYR may be considered a new oncometabolite.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Reem T. Atawia ◽  
Jessica L. Faulkner ◽  
Simone Kennard ◽  
Vinay Mehta ◽  
Galina Antonova ◽  
...  

The adipokine leptin plays a crucial role in blood pressure (BP) regulation notably by exerting pressor effects centrally via sympatho-activation and depressor effects via direct activation of its receptor (LepR) peripherally resulting in nitric oxide (NO)-mediated vasodilation. However, the predominant effects and cell type responsible for leptin-mediated NO production is not clearly understood. Herein, we examined the effect of selective deletion of LepR in endothelial cells (LepR EC-/- , KO) on BP and vascular function. BP recording via radiotelemetry in male KO and WT (LepR EC+/+ ) mice revealed significant increases in diastolic and mean arterial pressure in KO mice (DBP, WT: 90.2±2.1 vs. KO: 100.1±3.6; MAP, WT: 105.7±2.1 vs. KO: 113.7±2.6 mmHg, n=5, p<0.05). There was no difference in Systolic blood pressure or heart rate between KO and WT. Leptin infusion (0.9mg/kg/day,7 days) elicits a significant increase in BP of WT but not KO mice (DBP, WT: 89.2± 2.6 vs WT+Leptin 95.7±3.3; MAP, WT: 104 ±2.8 vs WT+Leptin: 110 ±2.7, n=5, p<0.05). We quantified sympathetic contribution to BP elevation by measuring BP response to glanglionic blockade (Hexamethonium). At baseline, KO mice exhibited a lower BP response than WT supporting a reduced neurogenic control of BP regulation in KO mice. Vascular contribution to high BP was investigated using wire myography in thoracic aorta. LepR deficiency impaired endothelial-dependent relaxation (EDR) to acetylcholine (n=7, p<0.05). L-NAME completely abolished EDR in KO and WT indicating that EC LepR deficiency reduced NO bioavailability. Recent evidence presents PFKFB3-mediated EC glycolysis as a new regulator of endothelial homeostasis. We found that aortic EC from KO exhibited increased PFKFB3 mRNA expression (p=0.065) and PFKFB3 inhibition restored EDR in KO. Remarkably, overexpression of PFKFB3 increased EC glycolysis in vitro and impaired EDR in WT aortic rings ex vivo . Collectively, our data suggest that impaired endothelial leptin receptor signaling induces a PFKFB3-dependent hyper-glycolytic phenotype resulting in NO deficiency and endothelial dysfunction that predisposes to higher BP regardless the reduced sympatho-activation which might prevent the increase in BP induced by exogenous leptin.


Blood ◽  
2021 ◽  
Author(s):  
Narcis Ioan Popescu ◽  
Cristina Lupu ◽  
Florea Lupu

Disseminated intravascular coagulation (DIC) is a syndrome triggered by infectious and non-infectious pathologies characterized by excessive generation of thrombin within the vasculature and widespread proteolytic conversion of fibrinogen. Despite diverse clinical manifestations ranging from thrombo-occlusive damage to bleeding diathesis, DIC etiology commonly involves excessive activation of blood coagulation and overlapping dysregulation of anticoagulants and fibrinolysis. Initiation of blood coagulation follows intravascular expression of tissue factor or activation of contact pathway in response to pathogen-associated or host derived damage-associated molecular patterns. The process is further amplified through inflammatory and immuno-thrombotic mechanisms. Consumption of anticoagulants and disruption of endothelial homeostasis lower the regulatory control and disseminate microvascular thrombosis. Clinical DIC development in patients associates with worsening morbidities and increased mortality regardless of the underlying pathology, therefore timely recognition of DIC is critical to reduce the pathologic burden. Due to diversity of triggers and pathogenic mechanisms leading to DIC, diagnosis is based on algorithms that quantify hemostatic imbalance, thrombocytopenia and fibrin/ogen conversion. Since current diagnosis primarily assesses overt consumptive coagulopathies, there is a critical need for better recognition of non-overt DIC and/or pre-DIC states. Therapeutic strategies for DIC patients involve resolution of the eliciting triggers and supportive care for the hemostatic imbalance. Despite medical care, mortality in DIC patients remains high and new strategies, tailored to the underlying pathologic mechanisms, are needed.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiapan Sun ◽  
Meiling Zhou ◽  
Guanghui Lv ◽  
Wenling Li ◽  
Yuanya Liu ◽  
...  

The disruption of endothelial homeostasis is the hallmark of coronary artery disease (CAD) and psychological disorders such as anxiety/depression. Xinkeshu (XKS), a traditional Chinese patent medicine, plays an essential role in CAD and psychological condition; however, the mechanisms underlying the effects of XKS on the endothelial function and endogenous endothelium-repair capacity in CAD patients with anxiety/depression remain elusive. In this study, endothelial function and endothelial progenitor cell- (EPC-) mediated reendothelialization capacity were compared among age-matched healthy subjects, CAD patients with or without anxiety/depression. Besides, CAD patients with anxiety/depression received 1-month XKS treatment. Anxiety/depression symptoms were evaluated by Generalized Anxiety Disorder 7-item (GAD-7)/Patient Health Questionnaire-9 (PHQ-9) score, endothelial function was tested by flow mediated dilation (FMD) measurement, and EPC-mediated reendothelialization capacity was evaluated by a carotid artery injury model in nude mouse ( n = 6 ) with the injection of XKS-incubated EPCs from CAD patients with anxiety/depression. The results showed that FMD and EPC-mediated reendothelialization capacity of CAD patients with anxiety/depression were compromised compared to healthy subjects and CAD patients without anxiety/depression. After 1 month of XKS treatment, FMD increased from 4.29 ± 1.65 to 4.87 ± 1.58 % ( P < 0.05 ) in CAD patients with anxiety/depression, whereas it remained unchanged in the controls. Moreover, XKS decreased GAD-7 and PHQ-9 scores. Meanwhile, incubating XKS enhanced in vivo reendothelialization capacity and in vitro apoptosis of EPCs from CAD patients with anxiety/depression, which was associated with the upregulation of CXC-chemokine receptor 7 (CXCR7) and inhibition of phosphorylation of p38 signaling. CXCR7 knockdown abolished the beneficial effects of XKS, which was rescued by p38 inhibitor SB203580. Our data demonstrate for the first time that XKS improves endothelial function and enhances EPC-mediated reendothelialization through CXCR7/p38/cleaved casepase-3 signaling and provides novel insight into the detailed mechanism of XKS in maintaining endothelial homeostasis in CAD patients with anxiety/depression.


Author(s):  
Francesco Vasuri ◽  
Sabrina Valente ◽  
Ilenia Motta ◽  
Alessio Degiovanni ◽  
Carmen Ciavarella ◽  
...  

Bone development-related genes are enriched in healthy femoral arteries, which are more prone to calcification, as documented by the predominance of fibrocalcific plaques at the femoral location. We undertook a prospective histological study on the presence of calcifications in normal femoral arteries collected from donors. Since endothelial-to-mesenchymal transition (EndMT) participates in vascular remodeling, immunohistochemical (IHC) and molecular markers of EndMT and chondro-osteogenic differentiation were assessed. Transmission electron microscopy (TEM) was used to describe calcification at its inception. Two hundred and fourteen femoral arteries were enrolled. The mean age of the donors was 39.9 ± 12.9 years; male gender prevailed (M: 128). Histology showed a normal architecture; calcifications were found in 52 (24.3%) cases, without correlations with cardiovascular risk factors. Calcifications were seen on or just beneath the inner elastic lamina (IEL). At IHC, SLUG was increasingly expressed in the wall of focally calcified femoral arteries (FCFA). ETS-related gene (ERG), SLUG, CD44, and SOX-9 were positive in calcifications. RT-PCR showed increased levels of BPM-2, RUNX-2, alkaline phosphatase, and osteocalcin osteogenic transcripts and increased expression of the chondrogenic marker, SOX-9, in FCFA. TEM documented osteoblast-like cells adjacent to the IEL, releasing calcifying vesicles from the cell membrane. The vesicles were embedded in a proteoglycan-rich matrix and were entrapped in IEL fenestrations. In this study, ERG- and CD44-positive cell populations were found in the context of increased SLUG expression, thus supporting the participation of EndMT in FCFA; the increased transcript expression of osteochondrogenic markers, particularly SOX-9, reinforced the view that EndMT, osteochondrogenesis, and neoangiogenesis interact in the process of arterial calcification. Given its role as a transcription factor in the regulation of endothelial homeostasis, arterial ERG expression can be a clue of endothelial dysregulation and changes in IEL organization which can ultimately hinder calcifying vesicle diffusion through the IEL fenestrae. These results may have a broader implication for understanding arterial calcification within a disease context.


2021 ◽  
Author(s):  
Mina Kelleni

Premature ejaculation and erectile dysfunction are affecting millions of patients all over the world and the quest for novel and safe drugs to manage either or both diseases is considered of great importance. Topical use of the herbal extract berberine might provide potential cure through restoration of endothelial homeostasis that is disturbed in both diseases as well as numerous other mechanisms as described in this manuscript and the author is the inventor and one of the holders of an internationally registered copyright to use berberine topically for management of sexual disorders.


2021 ◽  
Vol 22 (5) ◽  
pp. 2584
Author(s):  
Daniele Santi ◽  
Giorgia Spaggiari ◽  
Carla Greco ◽  
Clara Lazzaretti ◽  
Elia Paradiso ◽  
...  

Endothelial dysfunction is an early event in the pathogenesis of atherosclerosis and represents the first step in the pathogenesis of cardiovascular diseases. The evaluation of endothelial health is fundamental in clinical practice and several direct and indirect markers have been suggested so far to identify any alterations in endothelial homeostasis. Alongside the known endothelial role on vascular health, several pieces of evidence have demonstrated that proper endothelial functioning plays a key role in human fertility and reproduction. Therefore, this state-of-the-art review updates the endothelial health markers discriminating between those available for clinical practice or for research purposes and their application in human fertility. Moreover, new molecules potentially helpful to clarify the link between endothelial and reproductive health are evaluated herein.


Author(s):  
Chih-Hung Lai ◽  
Aleysha T. Chen ◽  
Andrew B. Burns ◽  
Kiran Sriram ◽  
Yingjun Luo ◽  
...  

The homeostasis of vascular endothelium is crucial for cardiovascular health and endothelial cell (EC) aging and dysfunction could negatively impact vascular function. Leveraging transcriptome profiles from ECs subjected to various stimuli, including time-series data obtained from ECs under physiological pulsatile flow vs. pathophysiological oscillatory flow, we performed principal component analysis (PCA) to identify key genes contributing to divergent transcriptional states of ECs. Through bioinformatics analysis, we identified that a long non-coding RNA (lncRNA) RAMP2-AS1 encoded on the antisense of RAMP2, a determinant of endothelial homeostasis and vascular integrity, is a novel regulator essential for EC homeostasis and function. Knockdown of RAMP2-AS1 suppressed RAMP2 expression and caused EC functional changes promoting aging, including impaired angiogenesis and increased senescence. Our study demonstrates an integrative approach to quantifying EC aging based on transcriptome changes, which also identified a number of novel regulators, including protein-coding genes and many lncRNAs involved EC functional modulation, exemplified by RAMP2-AS1.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Mahsa Nouri Barkestani ◽  
Sara Shamdani ◽  
Mazdak Afshar Bakshloo ◽  
Nassim Arouche ◽  
Bijan Bambai ◽  
...  

Abstract Background Bone marrow derived endothelial progenitor cells (EPCs) are immature endothelial cells (ECs) involved in neo-angiogenesis and endothelial homeostasis and are considered as a circulating reservoir for endothelial repair. Many studies showed that EPCs from patients with cardiovascular pathologies are impaired and insufficient; hence, allogenic sources of EPCs from adult or cord blood are considered as good choices for cell therapy applications. However, allogenic condition increases the chance of immune rejection, especially by T cells, before exerting the desired regenerative functions. TNFα is one of the main mediators of EPC activation that recognizes two distinct receptors, TNFR1 and TNFR2. We have recently reported that human EPCs are immunosuppressive and this effect was TNFα-TNFR2 dependent. Here, we aimed to investigate if an adequate TNFα pre-conditioning could increase TNFR2 expression and prime EPCs towards more immunoregulatory functions. Methods EPCs were pre-treated with several doses of TNFα to find the proper dose to up-regulate TNFR2 while keeping the TNFR1 expression stable. Then, co-cultures of human EPCs and human T cells were performed to assess whether TNFα priming would increase EPC immunosuppressive and immunomodulatory effect. Results Treating EPCs with 1 ng/ml TNFα significantly up-regulated TNFR2 expression without unrestrained increase of TNFR1 and other endothelial injury markers. Moreover, TNFα priming through its interaction with TNFR2 remarkably enhanced EPC immunosuppressive and anti-inflammatory effects. Conversely, blocking TNFR2 using anti-TNFR2 mAb followed by 1 ng/ml of TNFα treatment led to the TNFα-TNFR1 interaction and polarized EPCs towards pro-inflammatory and immunogenic functions. Conclusions We report for the first time the crucial impact of inflammation notably the TNFα-TNFR signaling pathway on EPC immunological function. Our work unveils the pro-inflammatory role of the TNFα-TNFR1 axis and, inversely the anti-inflammatory implication of the TNFα-TNFR2 axis in EPC immunoregulatory functions. Priming EPCs with 1 ng/ml of TNFα prior to their administration could boost them toward a more immunosuppressive phenotype. This could potentially lead to EPCs’ longer presence in vivo after their allogenic administration resulting in their better contribution to angiogenesis and vascular regeneration.


Sign in / Sign up

Export Citation Format

Share Document