scholarly journals DrosophilaFascin is a novel downstream target of prostaglandin signaling during actin remodeling

2012 ◽  
Vol 23 (23) ◽  
pp. 4567-4578 ◽  
Author(s):  
Christopher M. Groen ◽  
Andrew J. Spracklen ◽  
Tiffany N. Fagan ◽  
Tina L. Tootle

Although prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. Here we provide the first link between Fascin (Drosophila Singed, Sn), an actin-bundling protein, and PGs. Loss of either pxt or fascin results in similar actin defects. Fascin interacts, both pharmacologically and genetically, with PGs, as reduced Fascin levels enhance the effects of COX inhibition and synergize with reduced Pxt levels to cause both parallel bundle and cortical actin defects. Conversely, overexpression of Fascin in the germline suppresses the effects of COX inhibition and genetic loss of Pxt. These data lead to the conclusion that PGs regulate Fascin to control actin remodeling. This novel interaction has implications beyond Drosophila, as both PGs and Fascin-1, in mammalian systems, contribute to cancer cell migration and invasion.

Author(s):  
Julien Record ◽  
Mezida B. Saeed ◽  
Tomas Venit ◽  
Piergiorgio Percipalle ◽  
Lisa S. Westerberg

Actin cytoskeletal dynamics drive cellular shape changes, linking numerous cell functions to physiological and pathological cues. Mutations in actin regulators that are differentially expressed or enriched in immune cells cause severe human diseases known as primary immunodeficiencies underscoring the importance of efficienct actin remodeling in immune cell homeostasis. Here we discuss recent findings on how immune cells sense the mechanical properties of their environement. Moreover, while the organization and biochemical regulation of cytoplasmic actin have been extensively studied, nuclear actin reorganization is a rapidly emerging field that has only begun to be explored in immune cells. Based on the critical and multifaceted contributions of cytoplasmic actin in immune cell functionality, nuclear actin regulation is anticipated to have a large impact on our understanding of immune cell development and functionality.


2019 ◽  
Vol 12 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Lisha Xie ◽  
Tao Jiang ◽  
Ailan Cheng ◽  
Ting Zhang ◽  
Pin Huang ◽  
...  

Background: Alterations in microRNAs (miRNAs) are related to the occurrence of nasopharyngeal carcinoma (NPC) and play an important role in the molecular mechanism of NPC. Our previous studies show low expression of 14-3-3σ (SFN) is related to the metastasis and differentiation of NPC, but the underlying molecular mechanisms remain unclear. Methods: Through bioinformatics analysis, we find miR-597 is the preferred target miRNA of 14-3-3σ. The expression level of 14-3-3σ in NPC cell lines was detected by Western blotting. The expression of miR-597 in NPC cell lines was detected by qRT-PCR. We transfected miR-597 mimic, miR-597 inhibitor and 14-3-3σ siRNA into 6-10B cells and then verified the expression of 14-3-3σ and EMT related proteins, including E-cadherin, N-cadherin and Vimentin by western blotting. The changes of migration and invasion ability of NPC cell lines before and after transfected were determined by wound healing assay and Transwell assay. Results: miR-597 expression was upregulated in NPC cell lines and repaired in related NPC cell lines, which exhibit a potent tumor-forming effect. After inhibiting the miR-597 expression, its effect on NPC cell line was obviously decreased. Moreover, 14-3-3σ acts as a tumor suppressor gene and its expression in NPC cell lines is negatively correlated with miR-597. Here 14-3-3σ was identified as a downstream target gene of miR-597, and its downregulation by miR-597 drives epithelial-mesenchymal transition (EMT) and promotes the migration and invasion of NPC. Conclusion: Based on these findings, our study will provide theoretical and experimental evidences for molecular targeted therapy of NPC.


2008 ◽  
Vol 283 (9) ◽  
pp. 5972
Author(s):  
David J. Kusner ◽  
Christopher R. Thompson ◽  
Natalie A. Melrose ◽  
Stuart M. Pitson ◽  
Lina M. Obeid ◽  
...  

FEBS Journal ◽  
2021 ◽  
Author(s):  
Anshuman Bhanja ◽  
Ivan Rey‐Suarez ◽  
Wenxia Song ◽  
Arpita Upadhyaya

Human Cell ◽  
2021 ◽  
Author(s):  
Chenye Tang ◽  
Yuntao Wu ◽  
Xiao Wang ◽  
Kean Chen ◽  
Zhiling Tang ◽  
...  

AbstractMAFG-AS1 is an oncogenic lncRNA in multiple types of cancer. However, its role in bladder cancer (BC) remains unclear. The present study aimed to investigate the function of MAFG-AS1 in BC. BC and paired non-tumor tissues were collected. Two BC cell lines HT01197 and HT-1376 were used. Dual luciferase activity assay, RT-qPCR, western blot, CCK-8, transwell invasion assay, and wound healing assay were performed. We found that MAFG-AS1 was significantly up-regulated in BC tissues and predicted a poor survival rate. MAFG-AS1 interacted with miR-125b-5p. However, the expression levels of MAFG‑AS1 and miR-125b-5p were not obviously correlated in BC tissues, and MAFG‑AS1 and miR-125b-5p did not regulate the expression of each other. Interestingly, we found that SphK1, a downstream target of miR-125b-5p, was negatively correlated with miR-125b-5p, while it was positively correlated with MAFG-AS1 across BC tissues. In addition, overexpression of MAFG‑AS1 upregulated the expression of SphK1 in BC cells, and attenuated the inhibitory effects of miR-125b-5p on the expression of SphK1. Functional assays showed that overexpression of MAFG‑AS1 promoted BC cell proliferation, migration, and invasion, while its effects were attenuated by overexpression of miR-125b-5p. Moreover, overexpression of miR-125b-5p inhibited BC cell proliferation, migration, and invasion, while its effects were alleviated by overexpression of SphK1. Taken together, our findings demonstrated that MAFG-AS1 has an oncogenic role in BC by regulating the miR-125b-5p/SphK1 axis. MAFG-AS1 might serve as a good diagnostic marker and a potential therapeutic target of BC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiguang Meng ◽  
Xuxin Chen ◽  
Zhihai Han

Abstract Background To investigate the role and its potential mechanism of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) in lung adenocarcinoma. Methods Co-immunoprecipitation was performed to analyze the interaction between PFKFB4 and SRC-2. Western blot was used to investigate the phosphorylation of steroid receptor coactivator-2 (SRC-2) on the condition that PFKFB4 was knockdown. Transcriptome sequencing was performed to find the downstream target of SRC-2. Cell Counting Kit-8 (CCK-8) assay, transwell assay and transwell-matrigel assay were used to examine the proliferation, migration and invasion abilities in A549 and NCI-H1975 cells with different treatment. Results In our study we found that PFKFB4 was overexpressed in lung adenocarcinoma associated with SRC family protein and had an interaction with SRC-2. PFKFB4 could phosphorylate SRC-2 at Ser487, which altered SRC-2 transcriptional activity. Functionally, PFKFB4 promoted lung adenocarcinoma cells proliferation, migration and invasion by phosphorylating SRC-2. Furthermore, we identified that CARM1 was transcriptionally regulated by SRC-2 and involved in PFKFB4-SRC-2 axis on lung adenocarcinoma progression. Conclusions Our research reveal that PFKFB4 promotes lung adenocarcinoma cells proliferation, migration and invasion via enhancing phosphorylated SRC-2-mediated CARM1 expression.


Sign in / Sign up

Export Citation Format

Share Document